
Resilient Die-stacked DRAM Caches

Jaewoong Sim⇤ Gabriel H. Loh†

⇤School of ECE
Georgia Institute of Technology

jaewoong.sim@gatech.edu

Vilas Sridharan‡ Mike O’Connor†

†AMD Research ‡RAS Architecture
Advanced Micro Devices, Inc.

{gabe.loh,vilas.sridharan,mike.oconnor}@amd.com

ABSTRACT
Die-stacked DRAM can provide large amounts of in-package, high-
bandwidth cache storage. For server and high-performance com-
puting markets, however, such DRAM caches must also provide
sufficient support for reliability and fault tolerance. While con-
ventional off-chip memory provides ECC support by adding one
or more extra chips, this may not be practical in a 3D stack. In
this paper, we present a DRAM cache organization that uses error-
correcting codes (ECCs), strong checksums (CRCs), and dirty data
duplication to detect and correct a wide range of stacked DRAM
failures, from traditional bit errors to large-scale row, column, bank,
and channel failures. With only a modest performance degradation
compared to a DRAM cache with no ECC support, our proposal
can correct all single-bit failures, and 99.9993% of all row, column,
and bank failures, providing more than a 54,000⇥ improvement in
the FIT rate of silent-data corruptions compared to basic SECDED
ECC protection.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—Cache memories;
B.8.1 [Performance and Reliability]: Reliability, Testing, and
Fault-Tolerance

General Terms
Design, Performance, Reliability

Keywords
Reliability, error protection, die stacking, cache

1. INTRODUCTION
Recent proposals for integrating die-stacked DRAM to provide large
in-package caches have the potential to improve performance and
reduce energy consumption by avoiding costly off-chip accesses to
conventional main memory [2, 5, 12, 13, 22, 28, 33]. Die-stacking
technology is just beginning to be commercialized [17, 26, 30], but
it is limited to certain niche and other market segments that can
afford the higher costs of incorporating this new technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

D D D D D D D D
8 8 8 8 8 8 8 8

D D D D D D D D
8 8 8 8 8 8 8 8

E
8

64 bits data 64 data + 8 ECC = 72 bits (a) (b)

Figure 1: Organization of DRAM chips on a DIMM (one side,
x8 chips) for (a) non-ECC DRAM, and (b) ECC DRAM.

Many high-end markets require superior reliability, availability
and serviceability (RAS). Die-stacked memories may need to be
significantly even more reliable because of their lack of serviceabil-
ity. Compared to conventional DIMMs that can be easily replaced,
a die-stacked memory may require discarding the entire package
including the perfectly functioning (and expensive) processor.

Traditionally, RAS for memory has been provided by using error-
correcting code (ECC)-enabled DIMMs, where each rank’s mem-
ory chips are augmented with one or more additional chips to store
the ECC/parity information needed to protect the data. Such ECC
DIMMs can provide basic single-error correction/double-error de-
tection (SECDED) capabilities, or more complex ECCs (e.g., Reed-
Solomon codes [29]) can provide chipkill protection that allows an
entire memory chip to fail without compromising any data [3].

For die-stacked DRAM, it may not be practical to add extra chips
to provide the additional capacity for storing ECC information. For
example, if a DRAM stack has only four chips to begin with, it may
not be physically practical to add another “half” chip to provide
the extra storage (assuming +12.5% for SECDED). There are other
complications with trying to extend a conventional ECC organiza-
tion to stacked DRAM such as storage/power efficiency and eco-
nomic feasibility, which we will cover in Section 2. In this work,
we propose a series of modifications to a stacked-DRAM cache to
provide both fine-grain protection (e.g., for single-bit faults) and
coarse-grain protection (e.g., for row-, bank-, and channel-faults)
while only utilizing commodity non-ECC stacked DRAM chips.
Furthermore, these RAS capabilities can be selectively enabled to
tailor the level of reliability for different market needs.

2. BACKGROUND

2.1 ECC for Conventional DRAM
Conventional off-chip memory is organized on dual-inline memory
modules (DIMMs), with each side consisting of multiple chips. For
the sake of simplicity, this discussion focuses on an organization in
which each chip provides eight data bits at a time (“x8”), so the
eight chips ganged together implement a 64-bit interface as shown
in Figure 1(a). Typically a Hamming code [8] with seven check
bits (or a similar code) is used to provide single-bit error correction
(SEC) for 64 bits of data. In addition to the SEC code, an additional

128b 32b 32b 32b 32b

(a) (b)

Figure 2: Reading data from a die-stacked DRAM with (a) all
data delivered from a single bank from a single layer (similar to
JEDEC Wide I/O [11]), and (b) data distributed across banks
from four layers.

parity bit is provided to enable double-bit error detection (DED).
This introduces eight bits of overhead per 64 bits of data, which
is implemented by adding a ninth chip to the DIMM, as shown
in Figure 1(b). All 72 bits are read in parallel, and the 8 bits of
SECDED coding are used to check and possibly correct one of the
64 bits. Chipkill protection can be achieved in the same area over-
head (although typically using x4 chips) by using a Reed-Solomon
symbol-correction code and laying out the memory system so each
DRAM chip contributes bits to exactly one ECC “symbol” [3].

A key advantage of the conventional ECC DIMM approach is
that the silicon for each of the individual chips is identical, which
allows the memory manufacturers to incur only the engineering ex-
penses of designing a single memory chip. The difference comes
from the design of the DIMM modules: the non-ECC version sup-
ports (for example) eight memory chips and the ECC version sup-
ports nine, but the engineering cost of designing and manufacturing
multiple printed circuit boards is far cheaper than doing the same
for multiple chip designs. Maintaining a single chip design also
helps optimize a memory vendor’s silicon inventory management.

2.2 Die-stacked DRAM
Die-stacked DRAM consists of one or more layers of DRAM with a
very-wide data interface connecting the DRAM stack to whatever
it is stacked with (e.g., a processor die). Whereas a conventional
memory chip may provide only a four- or eight-bit data interface
(the reason multiple chips are ganged together on a DIMM), a sin-
gle layer of die-stacked memory can provide a much larger inter-
face, such as 128 bits [6, 17]. Given this wider interface, all bits
for a read request can be transferred across a single interface, and
therefore all bits are sourced from a single chip in the stack, as
shown in Figure 2(a).

In theory, the stacked DRAM could be organized to be more like
a DIMM, in that each of the N chips in a stack provides 1

N

th of
the bits, as shown in Figure 2(b). This approach is undesirable
for a variety of reasons. Requiring the parallel access of N chips
means activating banks on all chips. This reduces peak bank-level
parallelism by a factor of N , which reduces performance [19]. In
addition to the N bank activations, accessing all chips in parallel re-
quires switching N row and column decoders and associated muxes
on each access, increasing both the power as well as the number of
points of possible failure. Timing skew between different bits com-
ing from different layers for the same request may also make the
die-stacked I/O design more challenging. Distributing data across
layers also limits flexibility in the design of the stacks. If, for exam-
ple, data are spread across four layers, then DRAM stack designs
will likely be constrained to have a multiple of four DRAMs per
stack. In summary, a “DIMM-like” distribution of data across the
layers of the DRAM stack is problematic for many reasons.

2.3 DRAM Failure Modes
Conventional DRAM exhibits a variety of failure modes including
single-bit faults, column faults, row faults, bank faults, and full-
chip faults [10, 35]. These faults can affect one or more DRAM
sub-arrays and either be permanent or transient. Recent field stud-
ies on DDR-2 DRAM indicate that over 50% of DRAM faults can
be large, multi-bit (row, column, bank, etc.) faults, and that DRAM
device failure rates can be between 10-100 Failures in Time (FIT)
per device, where 1 FIT is one failure per billion hours of opera-
tion [35]. Neutron beam testing also shows significant inter-device
and inter-vendor variation in failure modes and rates [27].

The internal organization of a die-stacked DRAM bank is sim-
ilar to an external DRAM, thus failure modes that occur in exter-
nal DRAM devices are likely to occur in die-stacked DRAM. Die-
stacked DRAM may also experience other failure modes, such as
broken through-silicon vias (TSVs), and accelerated failure rates
from causes such as negative-bias temperature instability (NBTI)
and electromigration due to elevated temperatures from being in a
stack. Some of these new failure modes (e.g., broken TSVs) will
manifest as a single failing bit per row, while others (e.g., electro-
migration) may cause multiple bits to fail simultaneously.

The cost of an uncorrectable/unrepairable DRAM failure in a
die-stacked context may be significantly more expensive than for
conventional DIMMs. In a conventional system, a failed DIMM
may result in costly down time, but the hardware replacement cost
is limited to a single DIMM. For die-stacked memory, the failed
memory cannot be easily removed from the package as the pack-
age would be destroyed by opening it, and the process of detaching
the stacked memory would likely irreparably damage the proces-
sor as well. Therefore, the entire package (including the expensive
processor silicon) would have to be replaced.

To summarize, die-stacked DRAM RAS must provide robust de-
tection and correction for all existing DRAM failure modes, should
be robust enough to handle potential new failure modes as well, and
will likely need to endure higher failure rates due to the reduced
serviceability of 3D-integrated packaging.

2.4 Applying Conventional ECC to Stacked
DRAM

Conventional external DRAM handles the ECC overhead by in-
creasing overall storage capacity by 12.5%. There are two straight-
forward approaches for this in die-stacked memories. The first is
to add additional chips to the stack to provide the capacity, just like
what is done with DIMMs. For instance, in a chip stack with eight
layers of memory, adding a ninth would provide the additional ca-
pacity. In stacked DRAM, however, when the additional chip is
used to store ECC information (as in the conventional SECDED
ECC), extra contention occurs on the ECC chip as the stacked
DRAM does not require sourcing data bits from multiple chips un-
like conventional DIMMs (Section 2.2); this makes an ECC check a
significant bottleneck under heavy memory traffic, thereby increas-
ing the load-to-use latency of memory requests.

Note that when the nine-chip stack is used as DIMM-like organi-
zations where accesses are distributed across all of the layers, this
approach suffers from all of the described shortcomings (e.g., per-
formance/power issues). In addition, if the number of chips in the
stack is not equal to eight (or some integral multiple thereof), then
adding another chip is not cost effective. For example, in a four-
layer stack, adding a fifth layer provides +25% capacity, which may
be an overkill when, for example, SECDED only requires +12.5%.

The second straightforward approach is to increase the storage
capacity of each individual chip by 12.5%. The width of each row
could be increased from, for example, 2KB to 2.25KB, and the

DRAM
Cells

Sense Amp
Row Buffer

R
o

w
 D

ec
o

d
er

T T T D

2KB row Æ 32 x 64B blocks

3 x 64B for
29 tag entries

29 x 64B for
29 data blocks

D

Single direct-mapped set (tag+data)

29-way set-associative

Direct-mapped (28 blocks per row)

One DRAM bank

Figure 3: A DRAM bank with 2KB row size. When used
as a cache, the row can be organized (top) as a 29-way set-
associative set, or (bottom) as 28 individual direct-mapped sets.

data bus width increased correspondingly (e.g., from 128 bits to
144 bits). There are no significant technical problems with this
approach, but instead the problem is an economic one. A key to
conventional ECC DIMMs is that the same silicon design can be
deployed for both ECC and non-ECC DIMMs. Forcing memory
vendors to support two distinct silicon designs (one ECC, one non-
ECC) greatly increases their engineering efforts and costs, com-
plicates their inventory management, and therefore makes this ap-
proach financially undesirable.

2.5 Objective and Requirements
The primary objective of this work is to provide a high level of
reliability for die-stacked DRAM caches in a practical and cost-
effective manner. From a performance perspective, memory re-
quests usually require data only from a single chip/channel (i.e.,
bits are not spread across multiple layers of the stack). From a cost
perspective, regular-width (non-ECC) DRAM chips must be used.
From a reliability perspective, we must account for single-bit faults
as well as large multi-bit (row, column, and bank) faults.

In this work, we detail how to provide RAS support for die-
stacked DRAM cache architectures while satisfying the above con-
straints. Furthermore, the proposed approach can provide varying
levels of protection, from fine-grain single-bit upsets (SEC cover-
age), to coarser-grained faults (failure of entire rows or banks), and
the protection level can be optionally adjusted at runtime by the
system software or hardware.

3. ISOLATED FAULT TYPES IN DRAM
CACHES

In this section, we adapt the previously proposed tags-in-DRAM
approach [22, 28] to correct single-bit errors and detect multi-bit
errors to significantly diminish the probability of silent data cor-
ruptions (SDC). Correction of coarser-grained failures (e.g., row,
bank or even channel faults) is covered later in Section 4. While
many of the constituent components of our overall proposed solu-
tions are similar to or borrow from past works (see Section 7), we
provide a novel synthesis and combination of mechanisms to create
a new solution for a new problem space.

3.1 Review of Tags-in-DRAM Caches
Several studies have proposed using large, die-stacked DRAMs as
software-transparent caches [2, 22]; the primary arguments for us-
ing the DRAM as a cache are that it does not require changes to
the operating system and performance benefits can be provided for
existing software [22]. SRAM-based tag arrays are impractical for
conventional cache block sizes (i.e., 64B), and so recent works have
proposed embedding tags in the DRAM alongside the data [22].

Figure 3 shows an example DRAM bank, a row from the bank,
and the contents of the row. A 2KB row buffer can support 32 64-
byte blocks; one previously proposed organization (Figure 3, top)

uses 29 of these blocks for data, and the remaining three to imple-
ment the tags corresponding to these 29 “ways.” It has been shown
that a direct-mapped organization, as shown in Figure 3 (bottom),
performs better than the set-associative configuration [28], and so
for this paper, we use direct-mapped DRAM caches for all experi-
ments although our design easily applies to set-associative caches.

3.2 Supporting Single-bit Error Correction
By placing tags and data together in the same DRAM row, it is
relatively easy to reallocate storage between the two types. For
example, Figure 3 already provides one example in which the same
physical 2KB row buffer can be re-organized to provide either a
set-associative or a direct-mapped cache. Only the control logic
that accesses the cache needs to be changed; the DRAM itself is
oblivious to the specific cache organization.

This same observation that data and tags are “fungible” leads us
to a simple way to provide error correction for a DRAM cache.
Figure 4(a) shows the components of a basic tag entry and a 64B
cache block. This example tag entry consists of a 28-bit tag, a 4-bit
coherence state, and an 8-bit sharer vector (used to track inclusion
in eight cores)1; this example does not include replacement infor-
mation because we assume a direct-mapped cache. We provide one
SECDED ECC code to cover each tag entry, and then a separate
SECDED ECC code to cover the corresponding 64B data block. In
general, a block of n bits requires a SEC code that is about dlog2 ne
bits wide to support single-bit correction, and then a parity bit to
provide double-bit error detection [8]. The tag entry consists of 40
bits in total, thereby requiring a 7-bit SECDED code; the 512 data
bits use an 11-bit code.

Placement of tags and data in a single 2KB row requires a little
bit of organization to keep blocks aligned. We pack the original
tag entry, the ECC code for the tag entry, and the ECC code for
the data block into a single combined tag entry. These elements are
indicated by the dashed outline in Figure 4(a), which collectively
add up to 58 bits. We store eight of these tag entries in a 64B block,
shown by the tag blocks (‘T’) in Figure 4(b). Following each tag
block are the eight corresponding data blocks. Overall, a single
2KB row can store 28 64B blocks plus the tags.

Inclusion of ECC codes requires slightly different timing for
DRAM cache accesses. Figure 4(c) shows the timing/command
sequence to read a 64B block of data from the cache. After the
initial row activation, back-to-back read commands are sent to read
both the tags and then data [28]. We assume a DRAM interface
that can support 32B or 64B reads.2 The ECC check of the tag
entry occurs first to correct any single-bit errors; the corrected tag
is then checked for a tag hit. The 64B data block is read in paral-
lel with the tag operations (speculatively assuming a hit), and the
data’s ECC check is pipelined out over the two 32B chunks. At
the end of the ECC check (assuming a cache hit and no errors), the
data can be returned to the processor. If the tag must be updated
(e.g., transitioning to a new coherence state), the tag entry and the
corresponding ECC needs to be updated and then written back to
the cache (marked with asterisks in the figure). The timing for a
write is similar, and is omitted due to space constraints.

3.3 Supporting Multi-bit Error Detection
In certain mission-critical environments, correction of errors is crit-
ical to maintain system uptime. However, many such environments
1The actual sizes of each field will of course depend on the exact cache size, associa-
tivity, coherence protocol, etc.
2Current DDR3 supports both sizes, but it does not support switching between them
on a per-request basis. We assume that with die-stacked DRAMs, the TSVs provide
enough command bandwidth that adding a one-bit signal to choose between single-
cycle (32B) or two-cycle (64B) bursts is not an issue.

ECC

SECDED ECC (28 blocks per row)

…
28-bit tag 4-bit coherence 8-bit sharers 64B data

40 bits total per tag entry
Æ 7-bit SECDED code

512 bits per data block
Æ 11-bit SECDED code

58 bits total for tag entry and both SECDED codes
8 tag entries per 64B block

D T D D D D D D D D T D D D D D D D D T D D D D D D D D T D D D
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ACT RD

DQ

RD

DQ DQ

tag9

ECC ECC

DQ

ECC

WR

tRCD tCAS

ECC check on tag

tag hit check
pipelined ECC
check on data

compute new
ECC for tag*

update tag*

update tag* 32B tag read 64B data read
Command Bus

Data Bus

(a)

(b)

(c)
32B tag read

* if needed

DRAM$
Controller

Figure 4: (a) Contents of one tag entry and one 64B data block, along with SECDED ECC codes for each, respectively. (b) Contents
of a 2KB DRAM row, with eight tag entries packed into a 64B block and the corresponding eight data blocks following. (c) Timing
diagram for reading a 64B cache block; see Section 5 for timing assumptions.

also require robust detection of errors (even without hardware cor-
rection). It is bad to have a system crash after months of simulation
time, but it is even worse for that system to suffer an undetected er-
ror and silently produce erroneous results. Therefore, we are likely
to want more robust detection than provided by the SECDED ECC
scheme in Section 3.2.

For such mission-critical systems, we replace the DED parity bit
in each ECC with a very-strong cyclic redundancy check (CRC).
While CRCs are traditionally used for bursts of errors in data com-
munications, they can detect much broader classes of errors be-
yond those that occur in bursts. For example, a 16-bit CRC is ca-
pable of detecting all errors of up to 5 bits in 46-bit data (40bit
tags+6bit SEC), and all errors of up to 3 bits in 265-bit data (256bit
data+9bit SEC), regardless of whether these errors are clustered
(i.e., in a burst) or not. Furthermore, these CRCs can detect all
burst errors up to 16 bits in length, all errors with an odd number
of erroneous bits, and most errors with an even number of erro-
neous bits [18]. While these CRCs do not increase the DRAM
cache’s error-correction capabilities, they greatly increase its error-
detection capability, thereby drastically reducing SDC rates.

Figure 5(a) shows the layout of the tag blocks. Here, we only use
SEC codes (not SECDED); the CRCs provide multi-bit error detec-
tion and so the parity bit for double-error detection is not needed.
We divide the 64B data into two 32B protection regions, each cov-
ered by its own SEC and CRC codes. This allows up to two errors
to be corrected if each error occurs in a separate 32B region.

The storage requirement for the original tag plus the SEC and
CRC codes is 112 bits. Therefore, tag information for four cache
blocks can be placed in a 64B block. The overall layout for a 2KB
DRAM row is shown in Figure 5(b), with a 64B tag block contain-
ing four tags (including SEC/CRC), followed by the four respective
data blocks, and then repeated. The increased overhead reduces the
total number of data blocks per 2KB row to 25.

The hardware complexity of a CRC is exactly equivalent to that
of an equivalent-size ECC. Both CRCs and ECCs are expressed as

an H-matrix, and require a logic tree of XOR operations for encode
and decode. We assume four DRAM cache cycles to complete the
CRC operation on data, which is conservative when considering the
logic depth (about 8 XORs deep), additional cycles for wire delay,
and so on. For the CRC operation on tags, we use two DRAM
cache cycles, which is also conservative.

Figure 5(c) shows the timing for reads, which is very similar to
the SECDED-only case from Figure 4, apart from a few minor dif-
ferences. First, the tag block now contains both ECC and CRC
information, so when the tag block must be updated, the final tag
writeback is delayed by two extra cycles for the additional latency
to compute the new CRC. Second, both the tag and data SEC ECC
checks are followed by the corresponding CRC checks. We can re-
turn data to the CPU as soon as the ECC check finishes; that is, data
can be sent back before the CRC check completes (or even starts).
Even if a multi-bit error were detected, there is nothing the hard-
ware can do directly to correct the situation. We assume the hard-
ware simply raises an exception and relies on higher-level software
resiliency support (e.g., checkpoint restore) to handle recovery.

3.4 Discussions
Storage Overhead: We use a direct-mapped design in which a sin-
gle DRAM row contains 28 data blocks. The baseline has enough
left-over tag bits to fit the ECC codes; so, SECDED-only can be
supported without sacrificing further capacity efficiency compared
to the non-ECC case. For SEC+CRC, the effective capacity has
been reduced from 28 to 25 ways, or an overhead of 3/28 = 10.7%.
Compare this to conventional ECC DIMMs in which eight out of
nine (or 16 of 18) DRAM chips are used for data, and therefore the
corresponding ECC overhead is 1/9 = 11.0%; i.e., the storage over-
head of our SEC+CRC approach for DRAM caches is comparable
to the effective overhead of conventional off-chip ECC DIMMs.
Controller Support: Our schemes do not require any changes to
the stacked DRAM itself; they only require appropriate stacked-
DRAM controller support depending on the exact schemes sup-

…
28-bit tag coher. 8-bit sharers 32B data

16-bit CRC for data (incl. SEC code)

62 bits total for tag entry, SEC code and CRC

(a)
…

6-bit SEC

16-bit CRC for tags (incl. SEC code)

…
32B data

…
9-bit SEC

…
9-bit SEC

16-bit CRC for data (incl. SEC code)

50 bits total for two sets of SEC codes and CRCs

Tag+SEC+CRC for four blocks per 64B

SEC+CRC (25 blocks per row)

D T D
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(b) T T T T T T

ECC

ACT RD

DQ

RD

DQ DQ

tag9

ECC ECC

DQ

ECC

WR

tRCD tCAS

ECC check on tag

tag hit check

pipelined ECC check on data

compute new ECC
and CRC for tag*

update tag*

update tag* 32B tag read 64B data read
Command Bus

Data Bus

(c)
32B tag read

* if needed

DRAM$
Controller

CRC CRC

CRC CRC CRC CRC

CRC CRC

CRC check on (corrected) tag
CRC check on

(corrected) data

Figure 5: (a) Contents of one tag entry and one 64B data block (treated as two 32B chunks for protection purposes), along with SEC
ECC and CRC codes. (b) Contents of a 2KB DRAM row, with four tag entries (tag+SEC+CRC) packed into a 64B block and the
corresponding four data blocks following. (c) Timing diagram for reading a 64B cache block; see Section 5 for timing assumptions.

ported. For example, previous work described how non-power-
of-two indexing for a direct-mapped DRAM cache can be easily
implemented because modulo-by-constant operations are signifi-
cantly simpler than general-case remainder computations [28]. For
a stacked-DRAM controller that supports both SECDED (28 sets
per row) and SEC+CRC (25 sets per row), the controller would re-
quire two separate modulo-by-constant circuits (i.e., mod 28 and
mod 25) and use the appropriate circuit depending on the current
RAS mode.
Comparison to Stronger ECC: An alternative approach to our
SEC+CRC method is to provide a stronger ECC, such as a Double-
Error-Correct Triple-Error-Detect (DECTED) ECC, instead of a
CRC. However, note that ECC codes trade detection capability for
correction, so they will always detect fewer errors than an equivalent-
length CRC. For example, we evaluated using a DECTED ECC and
found that it has substantially higher SDC rates than our SEC+CRC
(7.9% versus 0.0007%).

4. COARSE-GRAIN FAILURES IN DRAM
CACHES

DRAM failure modes are not limited to single-bit/few-bit soft er-
rors from corrupted bitcells. Coarse-grain failures also occur with a
non-trivial frequency in real systems [35], affecting entire columns,
rows, banks, etc. This section details an approach to deal with
coarse-grain DRAM cache failures.

4.1 Identifying Coarse-grain Failures
Before handling failures, the failure must be detected. Here we
cover how failures are detected for different scenarios.
Row Decoder Failures: The failure of an entire row can occur due
to a fault in the row decoder logic [1]. If the row decoder has a fault
in which the wrong wordline is asserted, then the data from the
wrong row will be sensed, as shown in Figure 6(a). The DRAM
should have returned row 110001’s contents: the data Y and the
ECC codes for Y, namely E(Y). In this case, however, the adjacent

row’s contents, X and E(X), are returned instead, but the data and
ECC codes are self-consistent, and so the system would not be able
to detect that the wrong row had been accessed.

To detect this scenario, we fold in the row index into the data.
Figure 6(b) shows example data and ECC fields. We first compute
the ECC on the data. Then, instead of storing the raw data, we store
the exclusive-OR of the data and several copies of the row index.
When reading the data, we first XOR out the row index, which
returns the original data; from here, we perform the ECC check.

If the row decoder has a fault, then the wrong row will be read.
For example, Figure 6(c) shows a case when reading row 1100012
results in the previous row 1100002 instead. We XOR out the row
index for the row that we requested (e.g., 1100012), but this leaves
the data in a state with multiple “wrong” bits with respect to the
stored ECC code. The multi-bit error is detected, and the system
can then attempt to do something about it (e.g., raise a fault). A
similar approach was proposed in the Argus microarchitecture [23],
although our usage covers more fault scenarios due to our CRCs.
Column Failures: An entire column may fail due to problems
in the peripheral circuitry. For example, the bitline may not be
precharged precisely to the necessary reference voltage, or varia-
tions in transistor sizing may make the sense amplifier for a partic-
ular column unable to operate reliably. These faults may be per-
manent failures (e.g., manufacturing defects, wearout) or intermit-
tent (e.g., temperature-dependent). For a bank with a single col-
umn failure, reading any row from this bank will result in a corre-
sponding single-bit error. This can be caught and corrected by the
baseline ECC. If multiple columns have failed, the baseline CRC
checksum can detect the failure in most cases.

Column failures may also occur if the column decoder selects the
wrong column (e.g., if the column index was incorrectly latched
due to noise). Similar to hashing in the row index already de-
scribed, we can easily extend the scheme to also XOR in the col-
umn index. Prior to reading bits from the DRAM caches, both the
row and column indexes are XOR’ed out. An error in either case
will cause a CRC mismatch with high probability. The system may

R
o

w
 D

e
co

d
e

r

Row 101110

X E(X)
Y E(Y)

Row 101111

Row 110001 Å requested row
Row 110000 Å accessed row

Row 110010

Row 110001

ECC9

No error!

10111010101001001001010110110101
Data

ECC

01001011

1100001100001100001100001100001100001100

Bitwise XOR

ECC

n copies of
row index

0111100110101000101001010111011001000111

1100011100011100011100011100011100011100 n copies of
row index

Requested row 110001, received row 110000 instead

Bitwise XOR

10111110101101001101010010110001

ECC9

01011011

Multi-bit error!
(a) (b) (c)

0111100110101000101001010111011001000111

Figure 6: (a) Row decoder error that selects the incorrect row, which is undetectable using within-row ECC. (b) Process for folding
in the row index (row 1100002), and (c) usage of the folded row index to detect a row-decoder error.

A

X
B
X’

Bank 0 Bank 1

C

Y Y’
D

Bank 2 Bank 3
A, B, C, D,

…
(X, Y are

stale)

Main Memory Multi-bit
error

Clean copy

DRAM Cache

Figure 7: Example DRAM cache contents in which clean data
are backed-up by main memory, but dirty data are duplicated
into other banks.

record some amount of fault history, and from this it would be very
easy to detect that errors consistently occur in a particular column
or set of columns. When this has been detected, the system could
map out the column using spare resources [16], but such schemes
are beyond the scope of this paper.
Bank/Channel Failures: In the case of an entire bank failing, read-
ing any row from that bank likely will result in garbage/random bit
values, all zeros, or all ones. For random bit values, the probability
of the CRC fields being consistent with the data portion will be very
low, and so this would manifest itself as an uncorrectable multi-bit
error. For all zeros or all ones, instead of just XORing in multiple
copies of the row index, some copies (e.g., every other one) are bit-
wise inverted. Similar to the row-decoder failure, it is possible that
the bank decoder fails and sends a request to the wrong bank. The
row-index XOR scheme can be extended to include the bank index.
The failure of an entire channel and/or channel decoder faults can
be treated in a similar manner.

4.2 DOW: Duplicate-on-Write
To tolerate multi-bit errors, row failures and even bank failures, we
use a Duplicate-on-Write (DOW) approach that has some similari-
ties to RAID-1 used for disk systems, but does not incur the same
amount of storage overhead. RAID-1 duplicates every disk block
(so the filesystem can tolerate the failure of a complete disk), and
therefore a storage system must sacrifice 50% of its capacity to pro-
vide this level of protection (and 50% of its bandwidth for writes).

The key observation for the DRAM cache is that for unmodified
data, it is sufficient to detect that an error occurred; the correct
data can always be refetched from main memory. For dirty data,
however, the modified copy in the cache is the only valid copy, and
so there is no where else to turn to if this sole copy gets corrupted
beyond repair. This observation has been leveraged to optimize
the protection levels of physically distinct caches (e.g., parity in
the IL1 and SECDED ECC in the DL1), we extend this concept to
vary protection within the shared, unified same cache structure.

DOW stores a duplicate copy of data only when the data are
modified. This way, the duplication overhead (capacity reduction)
is limited to only dirty cache blocks. Figure 7 shows a few example
cache blocks; blocks A, B, C, and D are all clean, and so the cache
stores only a single copy of each. If any are corrupted beyond repair
(e.g., C), then the clean copy in memory can provide the correct
value.3 Blocks X and Y are dirty, and so we create duplicate copies
X’ and Y’ in other banks. If the rows (or entire banks) for X or Y
fail, we can still recover their values from X’ or Y’.

In this example, we use a simple mapping function for placing
the duplicate copy. For N banks, a cache line mapped to bank i has
its duplicate placed in bank i + N

2 mod N . To support channel-
kill, the duplicate from channel j is instead mapped to channel
j+ M

2 mod M , assuming M total DRAM cache channels. More
sophisticated mapping could reduce pathological conflict cases, but
we restrict our evaluations to this simple approach.
Operational Details Here, we briefly explain the mechanics of
the different possible scenarios for reading, writing, evictions, etc.,
and how DOW operates for each of these. The guiding invariants
for DOW operation are: (1) if a cache line is clean, then there exists
one and only one copy in the DRAM cache, and (2) if a line is
dirty, then there exists exactly two copies of the modified data in
the DRAM cache.
Read, Clean Data: The cache line is clean; so, only one copy
exists in the cache in its original location. This line is used.
Read, Dirty Data: While two copies exist, we simply use the copy
located in the original location.
Write, Currently Clean Data: The cache line is now being modi-
fied, and so a duplicate must be created to satisfy the invariant that
two copies of a dirty line must exist in the cache. A line from the
duplicate’s target bank must first be evicted, and then the (modi-
fied) duplicate is installed. The original copy is modified as well.
These operations may be overlapped.
Write, Already Dirty Data: The original copy is modified. When
checking the location of the duplicate, there will be a hit and so no
additional lines need to be evicted. The duplicate is modified to
match the newly updated original copy.
Read/Write, Cache Miss: The bank where the original copy should
reside is checked and a miss is discovered. The request is then for-
warded directly to main memory. The location to where a duplicate
would map is not checked because the duplicate exists only if the
line was dirty (by invariant #2). Given that the original location
resulted in a miss, the cache line necessarily cannot be dirty and
therefore the duplicate cannot exist.

3We assume some adequate level of protection of main memory; protection of main
memory has been well researched and is outside the scope of this paper.

Eviction of Clean Data: This is the only copy in the cache, and it
is consistent with main memory, so the cache line may simply be
dropped. Updates to the home node may still be required if using a
directory-based cache-coherence protocol.
Eviction of Duplicate: The line is dirty and so it must be written
back to main memory on an eviction. The original copy either may
be invalidated or downgraded to a clean state (our invariants do not
permit a single copy of dirty data existing by itself, although one
clean copy or zero copies are allowed).
Eviction of Dirty Original: Like the previous case, the line is dirty
and so it is written back to main memory. In this case, the duplicate
is invalidated; it is not useful to keep the duplicate around even
if we downgrade it to a clean state, because on a cache miss to
the original cache line’s bank, we would proceed directly to main
memory and not check the duplicate’s bank.
Read, Corrupted Data: For a single-bit error, the baseline ECC
will correct it and then the read proceeds as normal according to
the relevant scenario described previously. In the case of an uncor-
rectable multi-bit error, if the data is clean, then a request is sent to
main memory. The value from memory is returned to the request-
ing core. If the data is dirty, then the copy from the duplicate is
retrieved and returned to the user (assuming that the duplicate has
no uncorrectable errors). If both copies have uncorrectable errors,
then a fault is raised (i.e., there is nothing more the hardware can
do about it). Whether the correct data is provided by main memory
or the duplicate copy, the correct data are rewritten into the original
location, which effectively corrects the multi-bit errors. Option-
ally, the data can immediately be read out again and compared to
the known-good value. If the data come out corrupted again, then
this strongly suggests that the problems are not the result of random
soft errors (e.g., high-energy particle strikes), but are in fact due to
an intermittent or hard fault of some sort.
Read, Corrupted Tag: If a tag entry has an uncorrectable multi-
bit error, then we cannot know for certain whether we would have
had a cache hit or miss, nor whether the data would have been dirty
or clean. In this case, we must conservatively assume that there
was a dirty hit, so we access the duplicate location. If we find the
requested block in the duplicate location, then that is the sole sur-
viving copy of the dirty data, which we return to the requesting core
and reinstall into the original cache line location. If we do not find
the line in the duplicate location, then either the line was not present
in the cache to begin with, or it (the original copy) was present but
in a clean state when it was corrupted. For either case, it is safe (in
terms of correctness) to read the value from main memory.

4.3 Summary of Coverage
The ECC+CRC scheme provides single-error correction and strong
multi-error detection for one or more individual bitcell failures as
well as column failures. Further layering DOW provides row-failure
coverage and complete bank-kill and channel-kill protection. The
idea of providing two different levels of protection is similar in
spirit with the memory-mapped ECC proposal [39], although the
details for our DRAM cache implementation are completely differ-
ent. In the best case for our approach, each of the N banks is paired
with one other bank (in another channel), and so one bank may fail
from each of the N

2 pairs. If a system implements multiple DRAM
stacks with channels interleaved across stacks, then DOW automat-
ically provides stack-kill protection as well. Note that while this
paper focuses on a specific configuration and corresponding set of
parameters, the proposed approach is general and can be tailored
to specific stacked-DRAM performance and capacity attributes as
well as the overall RAS requirements for different systems.

4.4 Optimizations for DOW
While DOW limits the duplication overhead to only those cache
lines that have been modified, in the worst case (i.e., when every
cache line is dirty) the overhead still degenerates back to what a
“RAID-1” solution would cost. We now discuss several variants on
DOW that can reduce duplication overheads.
Selective DOW: Not all applications and/or memory regions are
critical, and therefore not all need to have the high-level of reliabil-
ity that DOW provides. IBM’s Power7 provides a feature called se-
lective memory mirroring where only specific portions of memory
regions are replicated into split channel pairs [15]. Similarly, dirty-
data duplication (DOW) can be selectively applied to specific ap-
plications and/or memory regions. For example, critical operating-
system data structures may require strong protection to prevent
system-wide crashes, but low-priority user applications need not
be protected beyond basic ECC. Even within an application, not all
pages need to be protected, although to support this level of fine-
grain coverage, the application must provide some hints about what
should be protected.
Background Scrubbing: On-demand scrubbing can occur based
on the amount of dirty data in the cache. Each time a dirty line is
added to the cache, a counter is incremented (and likewise decre-
mented for each dirty eviction). If the counter exceeds a thresh-
old, then scrubbing is initiated. The scrubbing would proceed until
the number of dirty lines drops below a “low-water mark” (some
value less than the threshold) to prevent the scrubbing from con-
stantly kicking in. The writeback traffic can be scheduled during
bus idle times and/or opportunistically when a DRAM row is al-
ready open. This can also be used in concert with eager-writeback
techniques [20].
Duplication De-prioritization: When initially installing duplicates,
or when updating existing duplicates, these writes are not typi-
cally on the program’s critical path (these are the result of dirty
line evictions from the upper-level caches, not the result of a de-
mand request). The DRAM cache’s controller can buffer the dupli-
cate write requests until a later time when the DRAM cache is less
busy, thereby reducing the bank-contention impact of the duplicate-
update traffic.

5. EXPERIMENTAL RESULTS
5.1 Methodology
Simulation Infrastructure: We use a cycle-level x86 simulator
for our evaluations [9]. We model a quad-core processor with two-
level SRAM caches and an L3 DRAM cache. The stacked DRAM
is expected to support more channels, banks, and wider buses per
channel [6, 17, 21]. In this study, the DRAM cache has eight chan-
nels each with 128-bit buses, and each channel has eight banks [14],
while the off-chip DRAM has two channels, each with eight banks
and a 64-bit bus. Also, key DRAM timing parameters with bank
conflicts and data bus contention are modeled for both the DRAM
cache and main memory. Virtual-to-physical mapping is also mod-
eled to ensure that the same benchmarks in different cores do not
map into the same physical addresses. Table 1 shows the system
configurations used in the study.
Workloads: We use the SPEC CPU2006 benchmarks and sample
one-half billion instructions using SimPoint [32]. We then catego-
rize the applications into two different groups based on the misses
per thousand instructions (MPKI) in the L2 cache. We restrict the
study to workloads with high memory traffic; applications with
low memory demands have very little performance sensitivity to
memory-system optimizations and therefore expose very little ad-
ditional insight (we did verify that our techniques do not negatively

Processors
Core 4 cores, 3.2 GHz out-of-order, 4 issue width
L1 cache 4-way, 32KB I-Cache + 32KB D-Cache (2-cycle)
L2 cache 16-way, shared 4MB (24-cycle)

Stacked DRAM caches
Cache size 128 MB
Bus frequency 1.6 GHz (DDR 3.2GHz), 128 bits per channel
Channels/Ranks/Banks 8/1/8, 2048 bytes row buffer
tCAS-tRCD-tRP 8-8-8
tRAS-tRC 26-34

Off-chip DRAM
Bus frequency 800 MHz (DDR 1.6GHz), 64 bits per channel
Channels/Ranks/Banks 2/1/8, 16KB row buffer
tCAS-tRCD-tRP 11-11-11

Table 1: System parameters used in the study.

Group M MPKI Group H MPKI
milc 18.59 leslie3d 27.69
wrf 19.04 libquantum 28.39
soplex 23.73 astar 29.26
bwaves 24.29 lbm 36.62
GemsFDTD 26.44 mcf 52.65

Table 2: L2 misses per thousand instructions (L2 MPKI).

impact these benchmarks). From the memory-intensive benchmarks,
those with average MPKI rates greater than 27 are in Group H (for
High intensity), and of the remaining, those with 15 MPKI or more
are in Group M (for Medium).

We select benchmarks to form rate-mode (all cores running sepa-
rate instances of the same application) and multi-programmed work-
loads. Table 3 shows the primary workloads evaluated for this
study. Section 6 also includes additional results covering a much
larger number of workloads. We simulate 500 million cycles of ex-
ecution for each workload. We verified that this simulation length is
sufficiently long to cause the contents of the 128MB DRAM cache
to turn over many times (i.e., the DRAM cache is more than suffi-
ciently warmed up).
Performance Metric: We report performance of our quad-core
system using weighted speed-up [7, 34], which is computed as:

Weighted Speed-up =

X

i

IPCshared
i

IPCsingle
i

We use the geometric mean to report average values.
Failure Modes and Rates: We assume DRAM failure modes and
rates similar to those observed from real field measurements (FIT
in Table 4 [35]). We report results using both the observed failure
rates (Table 4) as well as failure rates of 10⇥ the observed rates
to account for potential increases in failures due to die stacking
and for inter-device variations in failure rates [27]. At this point,
we are not aware of any published studies reporting failure types
and rates for die-stacked DRAM. The assumption that failure rates
will be 10⇥ may be somewhat pessimistic, but by providing our
results across the range of 1-10⇥ the currently known FIT rates, the
actual stacked DRAM results should fall somewhere in between.
Furthermore, the relative mean time to failure (MTTF) rates for
our proposed schemes compared to the baseline are independent of
the underlying device FIT rates.
ECC and CRC simulation: We evaluate the performance of our
ECC and ECC+CRC schemes using Monte Carlo simulation as-
suming a bit error rate (BER) of 0.5 in a faulty DRAM location
(e.g., within a faulty row). This bit error rate corresponds to a 50%

Mix Workloads Group
WL-1 4 ⇥ mcf 4⇥H (rate)
WL-2 4 ⇥ leslie3d 4⇥H (rate)
WL-3 mcf-lbm-milc-libquantum 4⇥H
WL-4 mcf-lbm-libquantum-leslie3d 4⇥H
WL-5 libquantum-mcf-milc-leslie3d 4⇥H
WL-6 mcf-lbm-libquantum-soplex 3⇥H + 1⇥M
WL-7 mcf-milc-wrf-soplex 2⇥H + 2⇥M
WL-8 lbm-leslie3d-wrf-soplex 2⇥H + 2⇥M
WL-9 milc-leslie3d-GemsFDTD-astar 2⇥H + 2⇥M

WL-10 libquantum-bwaves-wrf-astar 1⇥H + 3⇥M
WL-11 bwaves-wrf-soplex-astar 1⇥H + 3⇥M
WL-12 bwaves-wrf-soplex-GemsFDTD 4⇥M

Table 3: Multi-programmed workloads.

Failure Mode Failure Rate (FIT)
Single Bit 33

Complete Column 7
Complete Row 8.4
Complete Bank 10

Table 4: Failure rates measured on external DRAM [35].

probability that a given bit is in error, and is chosen because the
erroneous value returned by the DRAM will sometimes match the
expected data value. For example, a DRAM row fault will not pro-
duce errors on every bit within that row (which would correspond
to a BER of 1), but rather only on those bits where the returned
value does not match the expected value.

We separately simulate row, column, and bank faults, and run
100 million simulations for each type of fault. Each simulation
randomly flips bits within a single row, column, or bank (with a
probability of 50%), and then applies the ECC and CRC logic to
determine whether the error will be corrected or detected. We do
not model row decoder or column decoder faults; we assume these
are caught 100% of the time by the row and column address XOR.

To calculate failure rates, we apply the detection and correction
coverage to previously reported FIT rates [35]. For the purposes
of this work, we assume all undetected errors result in silent data
corruption (SDC). This is likely to be somewhat conservative due to
fault masking effects [24], but note that our relative improvements
will remain accurate.

In evaluating DOW, we assume a single-fault model, i.e., only
one fault at a time will exist in the DRAM cache. Similar to tradi-
tional chipkill, DOW does not guarantee correction when there are
multiple independent faults in the DRAM cache (i.e., DOW pro-
vides “bank-kill” or “channel-kill” capability, depending on place-
ment of the duplicate line). Unlike traditional chipkill, there is a
very small likelihood that DOW will not detect all two-fault cases.
This can occur if both the original and duplicate lines have a fault
and the duplicate’s CRC mismatches. Given the failure rates and
detection coverage, the failure rate of this case is less than 1e-13
FIT, or once per 80 quadrillion years for a four-chip DRAM cache.

5.2 Fine-grain Protection
We first evaluate the performance impact of the proposed fine-grain
protection schemes on DRAM caches. Figure 8 shows the speed-up
over no DRAM cache between no RAS, ECC and ECC+CRC con-
figurations. The results show that the performance impact of our
proposed schemes is small. On average, the ECC and ECC+CRC

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35
Sp

e
e

d
-u

p
 o

ve
r

n
o

 D
R

A
M

ca

ch
e

No RAS
ECC
ECC+CRC

Figure 8: Performance comparison among no RAS, ECC, and
ECC+CRC (normalized to no DRAM cache).

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Sp
e

e
d

-u
p

 o
ve

r
n

o
 D

R
A

M

ca
ch

e

ECC+CRC
ECC+CRC+RAID-1
ECC+CRC+DOW

Figure 9: Performance comparison between fine-grain
(ECC+CRC) and coarse-grain (ECC+CRC+RAID-1 and
ECC+CRC+DOW) schemes (normalized to the performance
without the DRAM cache).

schemes only degrade an average of 0.50% and 1.68% compared
to a DRAM cache with no RAS support, respectively. ECC+CRC
reduces the cache capacity compared to no RAS, and it also slightly
increases bandwidth consumption; we further analyze the capacity
and bandwidth impact of ECC+CRC in Section 6.2.

5.3 Coarse-grain Protection
Figure 9 shows the performance of our proposed coarse-grain pro-
tection scheme (DOW) when applied on top of ECC+CRC. We
compare the results with ECC+CRC and ECC+CRC+RAID-1 to
show the effectiveness of DOW. In the case of the RAID-1-style
approach (i.e., full duplication), not only is cache capacity reduced
by half, but effective write bandwidth is reduced by half as well,
thereby leading to a non-negligible performance degradation of as
much as 13.1% compared to ECC+CRC (6.5% on average). How-
ever, the DOW scheme retains much of the overall performance
benefit of having a DRAM cache (on average, only -2.5% and -
0.8% performance loss compared to no RAS and ECC+CRC, re-
spectively) while providing substantial RAS improvements.

5.4 Fault Coverage and Failure Rates
Table 5 shows the percentage of faults detected in each failure
mode by each of our schemes, assuming a single four-layer stack
of DRAM. ECC-only detects all single-bit faults and most column
faults, because most of these faults affect only one bit per row [35].
ECC-only also detects 50% of all row and bank faults, which look
to the ECC like double-bit errors. ECC+CRC substantially im-
proves the detection coverage of column, row, and bank faults, de-
tecting 99.9993% of all faults. The detection percentage of the
CRC depends on the fault model. We assume that every bit in the
row or bank has a 50% chance of being incorrect; lower error rates

Detection
Failure Mode No RAS ECC Only ECC+CRC DOW

Single Bit 0% 100% 100% 100%
Column 0% 85% 99.9993% 99.9993%

Row 0% 50% 99.9993% 99.9993%
Bank 0% 50% 99.9993% 99.9993%

Table 5: Detection coverage for each technique.

Correction
Failure Mode No RAS ECC Only ECC+CRC DOW

Single Bit 0% 100% 100% 100%
Column 0% 85% B 85% C 99.9993%

Row 0% B 0% C B 0% C 99.9993%
Bank 0% B 0% C B 0% C 99.9993%

Table 6: Correction coverage for each technique. Cases where
correction coverage differs from detection coverage (Table 5)
are marked with BC.

Failure Rates No RAS ECC Only ECC+CRC DOW
SDC FIT 234-2335 41-410 0.0008-0.0075 0.0008-0.0075
DUE FIT 0 37-368 52-518 0

Table 7: Results using observed and 10⇥ DRAM failure rates.

(as might be observed with different failure modes) substantially
increase the detection percentage of the CRC. We also conserva-
tively assume that row and bank failures are due to all bits in the
row or bank being bad, rather than to row or bank decoder failures
which would be caught by XORing the row and bank address.

Table 6 shows the fraction of faults, by failure mode, that our
schemes can correct. ECC-only and ECC+CRC correct all single-
bit and 85% of column faults, but cannot correct any row or bank
faults.4 DOW, on the other hand, corrects all detected faults.

Table 7 shows the overall silent data corruption (SDC) and de-
tectable unrecoverable error (DUE) FIT rates for our techniques,
using both observed and 10⇥ DRAM failure rates. We assume
that all undetected failures will cause a silent data corruption. No
RAS leads to a SDC FIT of 234-2335, or an SDC MTTF of 49-488
years. ECC-only reduces the SDC FIT by 5.7⇥, but increases the
DUE FIT to 37-368 FIT. ECC+CRC reduces the SDC FIT to just
0.0008-0.0075 FIT, but this comes at the expense of an increase
in DUE FIT to 52-518 (220-2200 years MTTF). Finally, DOW
adds the ability to correct all detected errors while maintaining the
same SDC FIT as ECC+CRC. Overall, DOW provides a more than
54,000⇥ improvement in SDC MTTF compared to the ECC-only
configuration. While the reported MTTF rates may appear to be
adequately long, these can still result in very frequent failures in
large datacenter or HPC installations. The impact on such systems
will be further quantified in Section 6.

6. ANALYSIS AND DISCUSSIONS

6.1 Reliability Impact on Large System Sizes
The bandwidth requirements of future HPC systems will likely
compel the use of significant amounts of die-stacked DRAM. The
impact of DRAM failures in these systems is significantly worse
than for single-socket systems because FIT rates are additive across
nodes. For example, using the baseline (1⇥) FIT rates from Ta-
ble 4, a 100,000-node HPC system with four DRAM stacks per

4Row and bank faults with only a single bit in error can be corrected by these schemes,
but we assume that this does not occur.

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%

P
e

rf
o

rm
an

ce
 o

ve
rh

e
ad

 Bandwidth Impact
Capacity Impact

Figure 10: Capacity and bandwidth impact of the ECC+CRC
scheme.

node would have an SDC MTTF of only 10 hours from the die-
stacked DRAM alone with no RAS support. Our ECC-only tech-
nique would increase the SDC MTTF to only 60 hours. By contrast,
ECC+CRC and DOW have an SDC MTTF of 350 years for the en-
tire 100,000-node system. Inclusion of DOW is likely necessary,
because ECC+CRC (without DOW) has a 48-hour DUE MTTF on
such a system. While DUEs might be handled by software tech-
niques, the performance overheads of restoring the system to a
checkpoint every two days may not be acceptable. This analysis
optimistically assumes the baseline DRAM FIT rates, which are
likely lower than what will be observed with die-stacked DRAM
(e.g., if we assume a 10⇥ FIT rate, then without DOW, the system
would have to rollback to a checkpoint about every five hours).

6.2 Capacity and Bandwidth Impact
With RAS support, the performance of DRAM caches is lower due
to reduced cache capacity as well as higher latency/bandwidth. To
quantify the capacity impact, we evaluate a DRAM cache configu-
ration with the same capacity as ECC+CRC, but without the addi-
tional traffic. The bottom portion of the bars in Figure 10 shows the
performance reduction due to the cache capacity reduction alone.
The remaining performance loss comes from the additional band-
width and latency effects of handling the ECC and CRC codes.

6.3 Impact of Early Data Return
As described in Section 3.3, our ECC+CRC scheme (no DOW)
returns data before the completion of data CRC checks, which is
based on the observation that hardware cannot correct the multi-
bit errors anyway; thus, we do not need to wait for the check to
be finished for every cache hit. We also simulated a version of
ECC+CRC where we wait for the full CRC check to complete be-
fore returning data, which may be of use to support data poisoning.
On average, this degrades performance by only 0.5%; this is be-
cause the CRC check adds only four more DRAM cache cycles to
the load-to-use latency, which is a small relative increase compared
to the latency of activating and reading the DRAM cache row in the
first place.

6.4 Duplication Overheads of DOW
While DOW provides much better performance than a naive RAID-
1 approach, DOW still causes extra data duplication and writeback
traffic. Figure 11(a) shows the percentage of cachelines in the
DRAM cache that are dirty for ECC+CRC and also when DOW
is added. One would expect that the amount of dirty data should
increase due to duplication, but in fact the amount of dirty data de-
creases because of the maintenance of the invariant that all dirty
cache lines must have two copies. Thus, if either copy is evicted,
then the amount of dirty data in the cache goes down. The impact of

0%

5%

10%

15%

20%

25%

W
L-
1

W
L-
2

W
L-
3

W
L-
4

W
L-
5

W
L-
6

W
L-
7

W
L-
8

W
L-
9

W
L-
10

W
L-
11

W
L-
12

AV
G.

%
 D

irt
y

lin
es

 in
 D

RA
M

 c
ac

he
 ECC+CRC

ECC+CRC+DOW

0

1

2

3

4

5

6

W
L-
1

W
L-
2

W
L-
3

W
L-
4

W
L-
5

W
L-
6

W
L-
7

W
L-
8

W
L-
9

W
L-
10

W
L-
11

W
L-
12

AV
G.

W
rit

eb
ac

ks
 p

er
 1

00
0

cy
cl

es
 ECC+CRC

ECC+CRC+DOW

(a) (b)

Figure 11: Impact of DOW on (a) the amount of dirty lines in
the DRAM cache and (b) the writeback traffic from the DRAM
cache.

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45

64MB 128MB 256MB 512MB

Sp
e

e
d

-u
p

 o
ve

r
n

o
 D

R
A

M

ca
ch

e

No RAS
ECC
ECC+CRC
ECC+CRC+DOW

Figure 12: Sensitivity to different cache sizes (workloads in Ta-
ble 3).

this is that there is an increase in the DRAM cache’s writeback traf-
fic. Figure 11(b) shows the number of writebacks from the DRAM
cache per thousand cycles. For most workloads, the increase in
writeback traffic is not significant. The standouts are workloads
WL-3, WL-4, WL-6 and WL-8 that start with relatively higher
amounts of writeback traffic, and then DOW causes that traffic to
increase by another approximately 20%. Not surprisingly, these
are also the workloads that exhibited the largest performance losses
when applying DOW (see Figure 9). While some applications show
moderate increases in writeback traffic, the absolute traffic is still
low, which explains why DOW does not have a significant negative
performance impact in most cases.

6.5 Sensitivity to Cache Size
Figure 12 shows the average speed-up of no RAS, ECC, ECC+CRC,
and ECC+CRC+DOW over no DRAM cache with different cache
sizes. For the fine-grain protection schemes, the performance degra-
dation is relatively small across the cache sizes. For DOW, the rel-
ative performance loss increases with larger caches, which is due
to an increase in the amount of duplicated data. However, DRAM
caches with DOW still deliver the majority of the performance ben-
efit of the no RAS approach while providing far superior RAS ca-
pabilities.

6.6 Sensitivity to Different Workloads
We apply our protection schemes to all

�
10
4

�
= 210 combinations of

the applications in Table 2 to ensure that the performance impact
is also minimal for a broader set of workloads beyond the primary
workloads used in the paper. Figure 13 presents the average speed-
up (with ± one standard deviation) over the 210 workloads. The
proposed RAS capabilities have a relatively small impact on per-
formance. ECC, ECC+CRC and ECC+CRC+DOW degrade per-
formance by only 0.50%, 1.65% and 2.63% on average over no
RAS, respectively.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

No RAS ECC ECC+CRC ECC+CRC+DOW

Sp
e

e
d

-u
p

 o
ve

r
n

o

D
R

A
M

 c
ac

h
e

Figure 13: Average speed-up of no RAS, ECC+CRC and
ECC+CRC+DOW over the 210 workloads.

6.7 Value of Configurable RAS Levels
The proposed protection schemes are just a few possible imple-
mentations of RAS support for DRAM caches. Other approaches
are possible, from providing only light-weight parity-based error-
detection, to very robust multi-bit error correction (e.g., BCH or
Reed-Solomon codes). The more sophisticated schemes may re-
quire higher overheads, which reduce the overall data storage ca-
pacity or available bandwidth, but the high-level approach described
here (e.g., embedding tags, ECC, and data in the same DRAM row)
allows the designer to make the appropriate performance-versus-
resiliency trade-offs.

At the implementation level, the DRAM cache is just a commod-
ity memory component with no knowledge of how the data storage
is being used. This allows system designers (OEMs) to take a sin-
gle processor (with stacked DRAM) design but configure different
levels of protection for different deployments of the design. In a
commodity consumer system, one may choose to turn off ECC en-
tirely and make use of the full DRAM cache capacity. In servers
and certain embedded systems, basic SECDED ECC may be suffi-
cient; this is comparable to the level of protection used today (e.g.,
SECDED ECC DIMMs). In mission-critical enterprise servers and
HPC supercomputers, the full ECC+CRC and DOW protections
could be used. The selection of which level of protection to use
could be configured simply by a BIOS setting read during system
boot (e.g., NVIDIA’s Fermi GPU can enable/disable ECC in the
GDDR5 memories with a reboot [25]).

Protection levels conceivably could be configured dynamically.
Critical memory resources (e.g., operating system data structures)
may receive a high level of protection, while other low-priority user
applications may receive no or minimal protection. The level of
protection could be reactive to the observed system error rates; e.g.,
a system may by default use only ECC+CRC fine-grain protection,
but as the number of corrected errors increases beyond a certain
threshold, DOW is enabled to prevent data loss. Likewise, this
selective protection could be applied to only specific banks or even
rows of the DRAM cache if elevated error rates are localized. The
enabled protection level can be increased gradually as a product
slowly suffers hardware failures from long-term wear-out [4, 31].

7. RELATED WORK
As far as we are aware, this is the first work to target increased RAS
capabilities in die-stacked DRAM designs. However, several re-
cent works target more power-efficient external DRAM implemen-
tations, and bear some similarities to the techniques described in
this paper. Single-subarray access (SSA) proposes fetching an en-
tire cache line from a single DRAM device, using a RAID scheme
to support chipkill [37]. LOT-ECC and virtualized ECC propose
supporting chipkill with x8 DRAM devices by separating the error-
detection and error-correction steps and storing some ECC infor-
mation in data memory [36, 40]. The tiered coverage of memory-

mapped ECC [39] and LOT-ECC share some similarities with the
discussed ECC+CRC+DOW approaches, but the structures and im-
plementations are quite different. Mini-rank proposes storing ECC
bits along with the associated data bits to efficiently support RAS
for their mini-rank design [42]. The embedded ECC complicates
memory address translation (this technique is proposed for main
memory), but the approach taken in our work does not affect the
address translation as we store ECC information in the tag storage
and thus do not change the data block size. Abella et al. propose
adding hard-wired ROM entries to each row of an SRAM to pro-
vide a hard-wired row index when reading out data to detect row-
decoder errors [1], but such an approach does not extend easily to
commodity DRAMs. All of these techniques would require signif-
icant modifications to support die-stacked DRAM architectures.

The idea of replicating cache blocks has also been studied, al-
though in a different context. In-cache replication (ICR) improves
the resiliency of level-one data (DL1) caches [41]. ICR differs from
the proposed scheme in that the structures, constraints, and perfor-
mance implications of the DL1 force a very different design from
DOW; ICR makes use of dead-line predictors, more complex in-
dexing of duplicate copies (possibly with multiple locations), and
in some variants ICR duplicates both clean and dirty data.

There has also been a significant amount of recent research in
architecting die-stacked DRAM as large caches [2,5,13,22,28,33],
but to our knowledge, none of these have addressed the problems
of providing robust error correction and detection capabilities for
such large, in-package storage arrays. Micron’s Hybrid Memory
Cube provides ECC support for its 3D DRAM stacks [26], but this
requires custom DRAM chips, whereas the proposed approaches
are compatible with commodity non-ECC DRAM.

8. CONCLUSIONS
Stacked DRAM caches may play a significant role in attacking the
Memory Wall [38] going forward, but the technology will be eco-
nomically viable only if it can be deployed in sufficient volume.
Only a minority segment of the market demands RAS support, so
developing ECC-specific stacked DRAM chips is likely undesir-
able for memory manufacturers. This work presented a general ap-
proach for enabling high levels (well beyond current ECC schemes)
as well as configurable levels of RAS that works within the con-
straints of commodity, non-ECC DRAM stacks. Beyond the bene-
fit to memory vendors from having to support only a single (non-
ECC) DRAM chip design, this approach also benefits system ven-
dors (i.e., OEMs, ODMs) who can stock a single processor type
and then deploy it in consumer systems with the stacked-DRAM
ECC support disabled while using the same part in workstations
and servers with RAS support turned on.

Acknowledgments
We would like to thank the Georgia Tech HPArch members and the
anonymous reviewers for their suggestions and feedback. Part of
this work was conducted while Jaewoong Sim was on an internship
at AMD Research. Jaewoong Sim is also supported by NSF award
number 1139083.

9. REFERENCES
[1] J. Abella, P. Chaparro, X. Vera, J. Carretero, and

A. González. On-Line Failure Detection and Confinement in
Caches. In IOLTS, 2008.

[2] B. Black, M. M. Annavaram, E. Brekelbaum, J. DeVale,
L. Jiang, G. H. Loh, D. McCauley, P. Morrow, D. W. Nelson,
D. Pantuso, P. Reed, J. Rupley, S. Shankar, J. P. Shen, and

C. Webb. Die-Stacking (3D) Microarchitecture. In
MICRO-39, 2006.

[3] T. J. Dell. A White Paper on the Benefits of Chipkill-Correct
ECC for PC Server Main Memory. 1997.

[4] F. M. d’Heurle. Electromigration and Failure in Electronics:
An Introduction. Proceedings of the IEEE, 59(10), 1971.

[5] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi.
Simple but Effective Heterogeneous Main Memory with
On-Chip Memory Controller Support. In SC, 2010.

[6] Elpida Corporation. Elpida Completes Development of TSV
(Through Silicon Via) Multi-Layer 8-Gigabit DRAM. Press
Release, August 27, 2009.
http://http://www.elpida.com/en/news/2009/index.html.

[7] S. Eyerman and L. Eeckhout. System-Level Performance
Metrics for Multiprogram Workloads. IEEE Micro
Magazine, 28(3), May–June 2008.

[8] R. W. Hamming. Error Detecting and Error Correcting
Codes. Bell System Technical Journal, 29(2), 1950.

[9] HPArch. MacSim Simulator.
http://code.google.com/p/macsim/.

[10] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic
Rays Don’t Strike Twice: Understanding the Nature of
DRAM Errors and the Implications for System Design. In
ASPLOS-XVII, 2012.

[11] JEDEC. Wide I/O Single Data Rate (Wide I/O SDR).
http://www.jedec.org/standards-documents/docs/jesd229.

[12] D. Jevdjic, S. Volos, and B. Falsafi. Footprint Cache:
Effective Page-based DRAM Caching for Servers. In
ISCA-40, 2013.

[13] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer,
S. Makineni, D. Newell, Y. Solihin, and R. Balasubramonian.
CHOP: Adaptive Filter-Based DRAM Caching for CMP
Server Platforms. In HPCA-16, 2010.

[14] Joint Electron Devices Engineering Council. JEDEC:
3D-ICs. http://www.jedec.org/category/technology-focus-
area/3d-ics-0.

[15] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7:
IBM’s Next-Generation Server Processor. IEEE Micro
Magazine, 30(2), March–April 2010.

[16] S. Kikuda, H. Miyamoto, S. Mori, M. Niiro, and M. Yamada.
Optimized Redundancy Selection Based on Failure-Related
Yield Model for 64-Mb DRAM and Beyond. IEEE Journal
of Solid-State Circuits, 26(11), 1991.

[17] J.-S. Kim et al. A 1.2V 12.8GB/s 2Gb Mobile Wide-I/O
DRAM with 4x128 I/Os Using TSV-Based Stacking. In
ISSCC, 2011.

[18] P. Koopman and T. Chakravarty. Cyclic Redundancy Code
(CRC) Polynomial Selection for Embedded Networks. In
DSN, 2004.

[19] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving
Memory Bank-Level Parallelism in the Presence of
Prefetching. In MICRO-42, 2009.

[20] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager
Writeback - a Technique for Improving Bandwidth
Utilization. In MICRO-33, 2000.

[21] G. H. Loh. 3D-Stacked Memory Architectures for
Multi-Core Processors. In ISCA-35, 2008.

[22] G. H. Loh and M. D. Hill. Efficiently Enabling Conventional
Block Sizes for Very Large Die-Stacked DRAM Caches. In
MICRO-44, 2011.

[23] A. Meixner, M. E. Bauer, and D. Sorin. Argus: Low-Cost,

Comprehensive Error Detection in Simple Cores. In
MICRO-40, 2007.

[24] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin. A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-Performance
Microprocessor. In MICRO-36, 2003.

[25] NVidia Corp. Tuning CUDA Applications for Fermi. DA
05612-001_v1.5, 2011.

[26] J. T. Pawlowski. Hybrid Memory Cube: Breakthrough
DRAM Performance with a Fundamentally Re-Architected
DRAM Subsystem. In Hot Chips 23, 2011.

[27] H. Quinn, P. Graham, and T. Fairbanks. SEEs Induced by
High-Energy Protons and Neutrons in SDRAM. In REDW,
2011.

[28] M. K. Qureshi and G. H. Loh. Fundamental Latency
Trade-offs in Architecting DRAM Caches. In MICRO-45,
2012.

[29] I. S. Reed and G. Solomon. Polynomial Codes Over Certain
Finite Fields. Journal of the Society for Industrial and
Applied Mathematics, 8(2), 1960.

[30] K. Saban. Xilinx Stacked Silicon Interconnect Technology
Delivers Breakthrough FPGA Capacity, Bandwidth, and
Power Efficiency. White paper, Xilinx, 2011. WP380 (v1.1).

[31] D. K. Schroder and J. A. Babcock. Negative Bias
Temperature Instability: Road to Cross in Deep Submicron
Silicon Semiconductor Manufacturing. Journal of Applied
Physics, 94(1):1–18, 2003.

[32] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically Characterizing Large Scale Program
Behavior. In ASPLOS-X, 2002.

[33] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and
M. Thottethodi. A Mostly-Clean DRAM Cache for Effective
Hit Speculation and Self-Balancing Dispatch. In MICRO-45,
2012.

[34] A. Snavely and D. Tullsen. Symbiotic Job Scheduling for a
Simultaneous Multithreading Processor. In ASPLOS-IX,
2000.

[35] V. Sridharan and D. Liberty. A Study of DRAM Failures in
the Field. In SC, 2012.

[36] A. Udipi, N. Muralimanohar, R. Balasubramonian, A. Davis,
and N. P. Jouppi. LOT-ECC: LOcalized and Tiered
Reliability Mechanisms for Commodity Memory Systems.
In ISCA-39, 2012.

[37] A. Udipi, N. Muralimanohar, N. Chatterjee,
R. Balasubramonian, A. Davis, and N. P. Jouppi. Rethinking
DRAM Design and and Organization for
Energy-Constrained Multi-Cores. In ISCA-37, 2010.

[38] W. A. Wulf and S. A. McKee. Hitting the Memory Wall:
Implications of the Obvious. Computer Architecture News,
23(1):20–24, March 1995.

[39] D. H. Yoon and M. Erez. Memory Mapped ECC:Low-Cost
Error Protection for Last Level Caches. In ISCA-36, 2009.

[40] D. H. Yoon and M. Erez. Virtualized and Flexible ECC for
Main Memory. In ASPLOS-XV, 2010.

[41] W. Zhang, S. Gurumurthi, M. Kandemir, and
A. Sivasubramaniam. ICR: In-Cache Replication for
Enhancing Data Cache Reliability. In DSN, 2003.

[42] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and
Z. Zhu. Mini-Rank: Adaptive DRAM Architecture for
Improving Memory Power Efficiency. In MICRO-41, 2008.

