
SDM: Sharing-enabled Disaggregated Memory
System with Cache Coherent Compute Express Link

Hyokeun Lee∗, Kwanseok Choi†, Hyuk-Jae Lee†§, Jaewoong Sim†
∗North Carolina State University

†Department of Electrical and Computer Engineering, Seoul National University
§Inter-university Semiconductor Research Center, Seoul National University

∗hlee48@ncsu.edu, †{kwanseok.choi, hyukjae, jaewoong}@snu.ac.kr

Abstract—Disaggregated memory has been gaining significant
traction as a promising solution for scaling memory capacity
and better utilizing memory resources in data centers. However,
a disaggregated memory system that can simultaneously achieve
high performance and user transparency is still not available.
Although some modern interconnect technologies now feature
hardware coherence protocols that can potentially enable data
sharing among multiple computing nodes in a user-transparent
manner, naively applying these technologies to disaggregated
memory systems results in non-negligible performance overheads.

In this work, we propose SDM, a sharing-enabled, cache-
coherent disaggregated memory system that effectively utilizes
modern interconnect technology. The key design principle of
SDM is to implement a novel, dedicated control flow that
efficiently enables data sharing among multiple computing nodes
without the need to modify user applications, by leveraging the
message types defined in the modern memory expansion stan-
dard, Compute Express Link (CXL). We also introduce resource
management and speculative memory access mechanisms that do
not interfere with normal memory transaction channels, thereby
further improving the performance of disaggregated memory
systems. We evaluate our design based on an in-house simulation
framework with detailed analytical models that mimic a cache-
coherent multi-node disaggregated memory system. The results
show that SDM outperforms the optimized baseline system, which
is similar to the one employing CXL 3.0, by 5.77× and 2.65×
for two distinctive benchmark suites.

Index Terms—Disaggregated memory, CXL, cache coherency

I. INTRODUCTION

Modern high-performance computing applications such as

graph processing and in-memory databases require a sub-

stantial amount of memory capacity that a single compute

node is unable to accommodate. To overcome the so-called

“memory capacity wall,” the industry has thus far tackled

the problem at multiple different levels. At the device level,

memory vendors such as Samsung, Micron, and SK Hynix

continue to increase the memory capacity, even by vertically

stacking memory dies (e.g., HBM [44] and HMC [42]).1

At the module level, Intel has introduced high-density non-

volatile memory (NVM) products in DIMM form factors to

1Although HBM is considered as a solid technology for improving memory
bandwidth today, it was also anticipated to increase the memory capacity
by continuously stacking memory dies using through-silicon vias (TSVs).
Unfortunately, manufacturers are encountering several process technology-
related challenges as they attempt to stack more dies: resistance-capacitance
(RC) delay of TSVs, instant power consumption, and reliability issues [18].

expand the memory capacity [28], [51], [52]. At the system

level, several distributed memory systems have been proposed

by aggregating memory capacity from different server nodes

within a shared network [1], [4], [33].

However, these approaches do not fundamentally address

the memory scalability issue. Although vertically stacked

memory and NVM-based products can increase memory ca-

pacity to some extent, they still fall short of meeting the

memory requirement of modern applications. Increasing the

number of memory modules along different channels also

becomes challenging, as the pin counts on general-purpose

processors are on the verge of saturation. In addition, building

distributed memory systems results in considerable costs for

essential components (e.g., processors or storage devices) to

prepare tens of server nodes.

Fortunately, a disaggregated memory system, which aggre-

gates a large number of memory modules into a separate

memory node (or remote memory), has emerged as a promising

and flexible solution to alleviate the memory scalability issue

[36], [37]. Unlike a traditional computing node that runs user

applications, the memory node does not require the inclusion

of additional processors, storage devices, or even operating

systems, leading to lower development costs for a server

system. Computing nodes and memory nodes are connected to

a rack-level switch, on which various interconnect protocols

(e.g., RDMA [34], CXL [15], or CCIX [13]) are devised to

efficiently transfer commands and data.

Problems. While disaggregated memory is an attractive solu-

tion that enables memory pool expansion in a cost effective

manner, existing disaggregated memory systems encounter

two key issues: remote access overheads and user transparency.

Firstly, accessing a remote memory node incurs high latency

compared to accessing the local memory, as it involves several

data buffer copies across software layers when conventional

network-based transactions (e.g., TCP) are employed [23].

Although RDMA-based disaggregated memory systems have

been proposed to directly access remote memory regions while

minimizing data copies and the involved software layers [5],

[10], [17], [21], [34], [46], [50], [53], the use of RDMA

still necessitates additional copy operations for queue pair-

based transactions at the software level [20]. A second-level

86

2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT)

979-8-3503-4254-3/23/$31.00 ©2023 IEEE
DOI 10.1109/PACT58117.2023.00016

address translation is also a crucial factor that contributes to

a high remote access overhead. In a disaggregated memory

system, since each computing node runs its own operating

system, the node-level physical address from each computing

node needs to be translated to the system-/global-level physical

address through second-level address translation. Such node-

to-system address mapping needs to be stored in the memory

node, leading to a larger number of remote accesses. Sec-

ondly, the lack of user transparency is another issue with

disaggregated memory systems. Enabling transparent access

to memory nodes for user applications is crucial to the

widespread adoption of disaggregated memory systems. Still,

RDMA-based disaggregated memory systems require users to

transfer data from/to remote memory regions by modifying

their applications with APIs that abstract RDMA verbs (e.g.,

libibverbs [30]).

Recently, several prior works have been presented to ad-

dress the aforementioned problems by caching the remote

data or metadata (e.g., address translation information) on

a computing node [10], [31], [32], or by customizing the

swap fault handler in the operating system for user-transparent

remote access [10], [34], [46]. However, these works primarily

assume a single computing node in a disaggregated memory

system, and they have not considered data coherence among
multiple computing nodes. Some prior works provide data

sharing among different nodes using software synchroniza-

tion [2], [22], [40]. However, it is worth noting that software

synchronization would incur a significantly higher perfor-

mance overhead compared to hardware-assisted solutions, as

shown in the studies of traditional multicore and distributed

systems [12], [19]. Consequently, we envision that a cache-

coherent interconnect for expanded memory pools, Compute

Express Link (CXL) [16], is likely to be a key solution

to simultaneously address these problems for disaggregated

memory systems.

Challenges. CXL is a cache-coherent, transaction-level proto-

col that abstracts the I/O path using its own memory syntax,

irrespective of the underlying device media [29]. With its

memory syntax, CXL transparently expands the main mem-

ory pool with minimal modifications to the operating sys-

tem. However, applying CXL technologies to a disaggregated

memory system poses some new challenges. First, CXL 2.0

supports coherence only between a single computing node

(i.e., host) and multiple CXL devices. Although the recently-

announced CXL 3.0 supports data coherency among multiple

computing nodes, a computing node needs to exclusively
cache the data at a time by invalidating the same data in

other computing nodes, compromising the performance of

applications that exhibit high data locality. Second, even if data

sharing is enabled with CXL, harmoniously combining it with

other caching schemes is challenging, as the state-of-the-art

disaggregated memory systems employ an address translation

caching scheme that decouples access permission checking

from address translation [32]. In particular, checking access

permission inevitably necessitates remote access; moreover,

accessing data (whether cached or not) must be preceded by

permission checking, thereby leading to suboptimal system

performance due to the serialization.

Contributions. In this paper, we propose a sharing-enabled

disaggregated memory system, namely SDM, which effectively

allows multiple computing nodes to access the shared data

without the need of costly invalidations. SDM employs a

novel sharing-enabled control flow (SHA-CF) that abstracts

all nodes except for the requester host, wherein the memory

node emulates snoop transactions to other hosts by leveraging

the CXL.cache and CXL.mem message types defined in

the CXL specification without violating its own protocol.

Meanwhile, the resource management primitives of memory

nodes are also essential to our system, such as allocation, free,

and address translation. These primitives should not interfere

with normal read and write transaction channels of CXL (i.e.,

CXL.mem and CXL.cache). As such, we propose to leverage

the CXL.io channel for device control to manage the memory

node resource. We also propose speculative access to harmon-

ically combine the address translation caching and the data

caching schemes. The key idea is to overlap data access and

permission checking speculatively to increase the request pro-

cessing throughput, where the connection of the session will

be disconnected once the violation is detected. Our evaluation

shows that SDM achieves 5.77× and 2.65× higher speedups

for computation-intensive and memory-intensive workloads

compared to the baseline, which is similar to CXL 3.0 and

is assisted by a state-of-the-art caching scheme. In summary,

this paper makes the following contributions.

• We propose a disaggregated memory system that enables

effective data sharing between multiple computing nodes,

which builds on a modern interconnect standard, CXL.

The control flow in SDM emulates snoop requests among

multiple hosts while complying with well-defined CXL

specification. To our knowledge, this is the first work that

leverages CXL to achieve cacheline sharing in a multi-

node disaggregated memory system.

• We present a simple but effective mechanism for re-

mote memory resource management. Using the reserved

message field in the CXL.io protocol, we define new

message types to allocate, free, and walk page tables

without complicating the CXL.mem and CXL.cache
transactions that are dedicated to normal read and write

transactions.

• We show the inefficiency of naively applying the data

caching and the address translation caching schemes

to the CXL-based disaggregated memory system. Con-

sequently, we propose a speculative access method to

benefit more from caching schemes.

II. BACKGROUND

In this section, we first describe the disaggregated memory

system assumed in this work. We then provide the background

of a modern interconnect technology, Compute Express Link

(CXL), which potentially enables user-transparent data sharing

for multi-host disaggregated memory systems.

87

A. Assumptions on Disaggregated Memory

The use case of disaggregated memory systems. Disaggre-

gated memory systems can be used either as a swap space to

a local main memory [5], [21], [36], [37] or as an expanded

main memory pool [2], [10], [17], [22], [32], [34], [40], [46].

In this work, we assume that the disaggregated memory system

is constructed for main memory pool expansion, similar to the

recent proposals due to its attractiveness for performance and

system reliability. Note that although some prior works use

the memory node as a swap space to improve the perfor-

mance of demand paging (or page swapping), it may lead

to lower system reliability. In a modern OS, an optimistic
page allocation mechanism is employed to prevent severe

performance degradation due to page swapping that results in

context switch and TLB shootdowns. A newly accessed virtual

address is mapped to a free page, instead of sparing a physical

page for that virtual address using page swapping. Otherwise,

the out-of-memory killer may trigger a system failure [41],

[43], thereby degrading the system reliability. Consequently,

disaggregated memory systems are more likely to become an

expanded main memory pool.

Architecture of the disaggregated memory system. Figure 1

shows the overview of a baseline disaggregated memory

system, which is divided into three parts: memory node,

backplane, and computing node. The memory node consists

of several memory modules with simple hardware logic that

converts the transaction requests to module-compatible com-

mands, or vice versa. The exemption of processors and storage

from a memory node allows us to reduce the cost of the

memory node and thus enable a larger memory capacity.

The backplane redirects the requests or responses from one

node to another. The computing node, which consists of basic

hardware components, runs user applications.

A disaggregated memory system generally requires a

second-level page table walk to translate the node-level address

to the system-level address. As shown in Figure 1, the memory

management unit (MMU) first translates the virtual address

to the local physical address, which becomes the memory

request address. Once the last-level cache (LLC) miss oc-

curs, the system agent multiplexes memory requests from the

LLC to either local memory or the backplane, according to

the request address. In the backplane, the second-level page

table walk translates the local physical address to the global
physical address. Then, the memory node data is accessed

after checking access permission flags.

A stronger baseline. The additional page table walk incurs

significant performance overheads in disaggregated memory

systems due to the increased number of remote accesses for

the walk. In this work, we assume that the address translation

caching scheme such as [32] is applied to our system to

reduce the number of remote accesses as a stronger and more
reasonable baseline. The translation caching scheme decouples

translation information (i.e., mapping from the virtual address

to the global physical address) and access permission flags.

The translation information is cached in the local memory of

Computing node 0
Cores

MMU

L1 cache - LLC

Memory node 0
Hardware logic

Memory controllers

DIMM DIMMDIMM DIMM

Memory node N-1
…

Local physical

Virtual Global physical

System agent
Requests

B
ackplane

…
Computing node C-1

Memory node 1

Fig. 1. Overview of a disaggregated memory system.

the computing node, while the permission flag is cached in

the backplane because all computing nodes need to check the

access permission before accessing the memory node.

B. Compute Express Link (CXL)

CXL is a transaction-level multi-protocol specification that

is proposed by a consortium organized with various leading

industrial companies. Processor/memory vendors have recently

announced the CXL-enabled products [6], [27], [45], [47],

and some service providers are considering applying the

technology to disaggregated memory [35], [39].

The basic concept of CXL is to provide a standard, cache-

coherent interface for various hardware devices (e.g., memory

or accelerators) based on three independent logical channels at

the transaction level: CXL.mem, CXL.cache, and CXL.io.

CXL.mem transfers simple memory read and write requests;

CXL.cache transfers caching-related messages (e.g., co-

herence states) based on the conventional MESI protocol;
CXL.io transfers I/O semantics through PCIe-like packets to

control and initialize devices. Note that the coherence states

of computing nodes are stored in the dedicated coherence

directory, which is implementation-specific. The directory area

is accessed by the CXL home agent and coherence bridge

(COHB) component, both in the system agent (Section IV).

Furthermore, CXL does not consider transient coherence

states, as a component is only allowed to have one snoop

outstanding to a given cacheline address at a time in CXL.

Therefore, the component must wait until it receives the snoop

response before issuing the next snoop to that address.

At the device level, three CXL device types are defined

based on the aforementioned logical channels: type 1, type

2, and type 3. Type 1 devices are attractive when they

are expected to become fully coherent external caching de-

vices or accelerators. Type 1 devices only transmit cache

coherence-related messages on CXL.cache channel without

incorporating CXL.mem; hence, device-attached memory is

only private to the device. In practice, some domain-specific

accelerators (e.g., NPU) that proactively consume host data

can be manufactured as type 1 devices.

Type 2 is a proper device type if the device-attached

memory is desired to be not only fully coherent but vis-

ible to the host. Such a host-visible memory is referred

to as host-managed device memory. Data in host-managed

device memory is accessed via CXL.mem, followed by in-

teractive messages of coherence states and snooping on the

88

TABLE I
CXL MESSAGE TYPES USED IN THIS PAPER.

Channel Message Src. Description

CXL.mem

MemRd Host Memory read request
MemWr Host Memory write request
MemInv Host Invalidation request

MemRdFwd Host
Notify the device that that the data
can be pull from its memory

Cmp-* Mem Completion message

CXL.cache

RdOwn Mem Get cacheline ownership
RdAny Mem Read a cacheline
CLFlush Mem Invalidate a cacheline

GO-* Host
Respond one of the coherence states
as an indicator of state transition

CXL.cache channel. Different from type 1 devices, type 2

devices operate as direct data providers with respect to the

host. For example, high-cost copy operations between GPU

and host (e.g., cudaMalloc) can be avoided with type 2

devices.

Type 3 devices are used to expand the memory pool. Type 3

devices solely include host-managed device memory, which is

accessed via the CXL.mem channel. Compared to other device

types, type 3 uniquely has a feature similar to the logical

volume, namely a multi-logical device; it partitions a memory

device into 16 isolated logical regions, spanning secure and

isolated regions for different processes. Recently, memory

manufacturers have announced memory expansion products

based on type 3 [45], [47]. In this paper, memory nodes are

assumed as type 2 devices to develop a high-performance

disaggregated memory system based on the cache-coherent

memory pool.

CXL messages used in this work. Table I describes the

message types used in this paper. Note that CXL defines

more messages than the ones in the table; we only explain

the message types essential to the baseline and the proposed

control flow. The third column indicates the source of each

message type. Coherence states mentioned in the table are M

(modified), E (exclusive), S (shared), and I (invalid), which

are the same as the MESI protocol. Both RdOwn and RdAny
are read request messages from the memory. For Cmp-* and

GO-*, “*” can be overloaded with coherence states (i.e.,

MESI) that specify the coherence state of the cacheline. As

an example, after a device dispatches RdOwn or RdAny to

the host, the device will receive a response accompanying

coherence states, which would be the coherence state in that

device. According to the CXL specification, RdOwn is not

allowed to receive GO-S (shared), whereas RdAny is allowed

to receive GO-I, GO-S, GO-E, and GO-M as responses.

III. MOTIVATION

In this section, we first set the design goals of our proposed

disaggregated memory system, SDM. We then explain the

motivational challenges and inefficiencies of naively building

on the CXL protocol for disaggregated memory systems.

A. Design Goals

Goal 1: Leveraging as a main memory pool. Some prior

works [5], [21], [36] use disaggregated memory nodes as swap

spaces to improve the performance of page swapping. Page

swap occurs when the currently allocated physical memory

is preempted by another logical address. That is, swap spaces

are used for storing allocated page data in the backup storage.

In modern operating systems, physical memory is allocated if

free page blocks (i.e., not preempted memory) are available in

the memory pool. If free blocks are not available in the system,

otherwise, the out-of-memory (OOM) killer may trigger a

system failure [41], [43], potentially leading to lower system

reliability. Thus, it is necessary to leverage disaggregated

memory as the main memory pool rather than the swap space.

Goal 2: Low remote access latency. Accessing memory

nodes requires several remote accesses, which potentially

incurs large performance overhead. In a disaggregated memory

system, the remote accesses originate from two activities:

metadata access and data access. The metadata access includes

the address translation and the permission check (i.e., referring
to ACM, or access control metadata). In particular, address

translation leads to several remote memory accesses due to

the multi-level page table walk in modern architectures [24].

Checking the page permission is always necessary before

accessing normal data [32]; hence, lowering the average access

latency is also required for a high-performance disaggregated

memory system.

Goal 3: Preserving user transparency. Several bleeding-edge

technologies, such as NVM, neural processing units, and dis-

aggregated memory, have been announced to improve system

performance and scalability. However, these technologies are

challenging to be widely adopted in the market due to the

lack of user transparency. In most cases, programmers need

to manually modify their source code to take advantage of

new technologies (e.g., Intel PMDK [25] or tensor processing

units [48]). Such human effort is error-prone; hence, user

transparency is also a highly desirable feature in a high-

performance disaggregated memory system.

Our key observation is that applying the CXL protocol to a

disaggregated memory system can achieve the aforementioned

design goals. However, naively leveraging CXL brings new

challenging issues that need to be addressed with extra effort.

In the following subsection, we explain the problem definitions

of our work.

B. Problem Statements

Limitation of the naive approach/CXL 3.0. As a naive

approach, invalidation-based control flow (INV-CF) can be

considered as the baseline cache coherence management for

a multi-host disaggregated memory system. The main idea of

INV-CF is caching the data exclusively in a single computing

node by invalidating the same data in the others. The INV-

CF needs to define two representative primitives: fetch-clean
and fetch-dirty. For simplicity, we assume two host nodes (H-

1 and H-2) and one memory node (MN) to explain these

primitives, as shown in Figure 2. The fetch-clean primitive

occurs when a host requests the data that is cached by at most

one host. In Figure 2 (a), for instance, H-2 first reads data by

sending the MemRd message to the memory node. Once the

89

memory node receives the message, it sends RdOwn to other

hosts (i.e., H-1 in this example) to obtain the ownership of the

requested data. If the requested data has been cached in H-

1, H-1 invalidates the cacheline and sends MemRdFwd to the

memory node. Finally, H-2 obtains the data along with Cmp-E,

which updates the coherent state as E-state (exclusive).

The fetch-dirty primitive is also needed when a host requests

the data that is cached and modified by another host. In

Figure 2 (b), H-2 tries to fetch the modified data that is cached

in H-1. Using RdOwn, the memory node also tries to obtain the

ownership of the requested data. Different from the previous

scenario, H-1 issues MemWr to forward the up-to-date data to

the memory node. Once the memory node completes writing

the data from H-1, it signals Cmp, which is the predefined

response of MemWr, to H-1. Finally, H-1 issues MemRdFwd
to the memory node after invalidating the cacheline, similar

to the case of the fetch-clean primitive. As shown in the

shaded parts in the figure, fetch-clean incurs two additional

transactions, whereas fetch-dirty needs four transactions for

data invalidation.

Applying INV-CF to a four-node disaggregated memory

system (see Section V), we measure shared cacheline and
access ratios for computing-intensive (PARSEC) and memory-

intensive workloads (Intel GAP), as shown in Figure 3. In

general, most workloads yield high ratios, whereas raytrace
is low due to its stream access pattern. The shared cache-

line ratio is the ratio of the number of accessed cachelines

(from more than one host) to the number of all accessed

cachelines; the shared access ratio denotes the ratio of the

number of accesses on shared cachelines to the total number

of accesses. The shared cacheline ratio is the potential metric

that the system performance can be improved by allowing data

sharing in multiple computing nodes. Furthermore, the higher

shared access ratio may yield higher performance even for the

workloads with low shared cacheline ratios, because a low

shared cacheline ratio may result from a large denominator.

Note that INV-CF is similar to the coherence management

of the most recent CXL 3.0. In CXL 3.0, back-invalidation

channels (i.e., BISnp from device to host and BIRsp from

host to device) are newly introduced to manage the coherence

of multiple computing nodes. Compared to the INV-CF op-

erations in Figure 2 (b), for instance, a computing node H-2

H-1

MemRd

RdOwn

MemRdFwd

Data
Cmp-E

IE

E I

I E

H-2 MN H-1

MemRd

RdOwn
MemWr

Data
Cmp-E

H-2 MN
IM

Cmp

MemRdFwdM I

I E
(a) (b)

Fig. 2. Two representative primitives of INV-CF: (a) fetch-clean, (b) fetch-
dirty. The red arrows indicate CXL.cache messages; the black arrows
indicate CXL.mem messages; blue indicates transitions of coherence states.

PARSEC GAP

b
c-

tw
it

te
r

b
c-

w
eb

b
fs

-t
w

it
te

r

b
fs

-w
eb

cc
-t

w
it

te
r

cc
-w

eb

ss
sp

-t
w

it
te

r

ss
sp

-w
eb

A
v
er

ag
e

0%

20%

40%

60%

80%

100%

b
la

ck
sc

h
o
le

s

b
o
d

y
tr

ac
k

ca
n

n
ea

l

d
ed

u
p

fa
ce

si
m

fe
rr

et

fl
u
id

an
im

at
e

ra
y
tr

ac
e

st
re

am
cl

u
st

er

sw
ap

ti
o

n
s

x
2
6

4

A
v
er

ag
e

shared cachelines
shared accesses

Fig. 3. Shared cacheline ratio and shared access ratio.

requests a cacheline that is being cached by another computing

node H-1. After receiving MemRd from H-2, the memory

node issues BISnpInv to invalidate the data cached in H-12.

Subsequently, H-1 forwards the data along with the MemWr
message to the memory node if the cached data is dirty; on

the other hand, the BIRspI message is directly responded

to the memory node if the data is clean. Finally, the memory

node would send Cmp-E and data to H-2, as in the previous

examples.

H B MN H B MN

(a) (b)

MemWr

Get flag
Flag

MemWr

Cmp
Cmp

Request
Retires

Get flag

Get flag
Flag

gain
Request
Retires

MemWr Flag

Fig. 4. Control flows of: (a) only address translation caching, (b) combined
scheme (address translation caching + data caching). The blue arrows indicate
transactions of permission flags.

The inefficiency of combining two caching schemes. In

a disaggregated memory system, two independent caching

schemes are expected to enhance system performance. The

first scheme is our strong baseline, address translation caching

scheme, to reduce the number of remote accesses incurred by

two-level address translation (see Section II-A). The second

one is a simple data caching mechanism that caches memory

node data in a computing node. However, naively combining

these two schemes results in an inefficiency issue. Figure 4

compares latency diagrams of two cases. Note that we assume

that the local physical address is already translated to the

global physical address for both cases. Also, one host node

(H), backplane (B), and one memory node (MN) are assumed.

Figure 4 (a) shows the control flow of the sole translation

caching scheme. The memory request (e.g., MemWr) goes

to MN because H does not cache the data. The backplane

requests a permission flag from MN to check the access

permission. Finally, the memory request is forwarded to MN

if B confirms that there is no permission issue.

2The invalidation can be either broadcast or point-to-point depending on
the implementation-specific data structure of the directory or the snoop filter
in DCOH, as indicated in CXL 3.0.

90

Host bridge

local mem
controller

CXL
home agent

COHB

Processor-side

IOLD/ST

CXL endpoint

LLC

DMA

Local DIMM

Computing node 0
Processor Cores

L1 cache – L3 cache

Lo
ca

l D
IM

M
System agent

Host bridge

Local
memory

controller

CXL-
related

features

…

Computing node C-1

Backplane
CXL

Switch

ATU N-1

ATU N-2

…

…

ATU 1

ATU 0

Memory node 0
CXL parser

Multi-channel mem
controllers

DCOH

D
IM

M

D
IM

M

D
IM

M

D
IM

M

Memory node N-1

…

D
IM

M

(a) (b)

System agent

Fig. 5. System overview of SDM: (a) SDM architecture, (b) internal architecture of system agent. Orange blocks indicate new features.

Figure 4 (b) shows the timing diagram of the combined

scheme. In this case, H may already have the requested data

in its cache, but the data access permission still needs to be

checked for the memory request. Thus, H directly requests a

permission flag from MN to check the access permission. As B

receives the flag from MN, B can forward the received flag to

H. As such, the performance gain becomes the time difference

between the two retirement points. Therefore, enlarging this

difference can further improve the performance (Section IV-C).

IV. SDM: SHARING-ENABLED DISAGGREGATED MEMORY

A. Architectural Overview of SDM

Focusing on a cache-coherent disaggregated memory system

that is developed with CXL, we propose a sharing-enabled

disaggregated memory, namely SDM, in which shared data

can co-exist among multiple computing nodes. To enable such

a feature, we first need to develop a disaggregated memory

architecture that supports different channels of CXL protocols.

Figure 5 illustrates an architectural overview of SDM. At a

high level, the SDM consists of computing nodes, a backplane,

and memory nodes.

In one of the computing nodes, the system agent3 is

augmented by introducing CXL-related features to the I/O

path of the host bridge, which include a coherence bridge
(COHB) and a home agent. The home agent acts like an

interface between a computing node and a backplane. Once

the home agent receives CXL messages (e.g., RdOwn), it

redirects the messages to COHB, which is defined in the CXL

specification. COHB reads and updates the coherence directory

that is stored in the local memory. The coherence directory

holds the coherence state of each cache line belonging to

that computing node. Furthermore, contiguous allocation is

possible for the coherence directory; hence, it can be indexed

using algebraic computation. The latency of calculating the

directory index would be negligible compared to the latency of

others (e.g., interconnect). However, looking up in the cache

directory is not considered in our evaluation, and hence the

real implementation would have longer paths for coherence

3In some materials, system agent is referred to as root complex. In this
work, we use the term system agent henceforth, as announced in [14].

management. Rather than interrupting the processor, a direct

memory access (DMA) engine is utilized for CXL features to

directly communicate with local memory. Finally, the home

agent generates CXL messages to respond to incoming request

messages according to the states referenced by COHB.

In the backplane, the CXL switch distributes CXL requests

from different computing nodes to the memory node. Before

arbitrating requests, the CXL switch communicates with ad-

dress translation units (ATU i), which perform the second-level

page table walk to translate the local physical address to the

global physical address.

In the memory node, two additional features are also in-

cluded. First, the CXL parser obtains the source and request

type information from an incoming CXL request. Second, the

device coherency agent (DCOH), which is defined in the CXL

specification, holds coherence states of memory nodes and

generates CXL.cache messages based on the information

extracted from the CXL parser. Additionally, the memory

node might require a directory, namely the bias table managed

by DCOH logic; the bias table holds coherence states if the

memory node has a private data cache for caching data from

other nodes. However, the introduction of private caches is

beyond the scope of this paper.

In SDM, several design considerations must be addressed

in detail. First, a control flow that facilitates data sharing

in a multi-host disaggregated memory system is required

instead of adopting a high-overhead control flow (i.e., INV-

CF). Moreover, the control flow should not contradict the

CXL specification (Section IV-B). Second, a set of remote

memory management mechanisms for page allocation, de-

allocation, and page table walk is essential. The management

mechanisms should not interfere with the normal memory

transaction channels (i.e., CXL.mem and CXL.cache) to

ensure higher system performance. We observe that these

mechanisms can be implemented by smartly leveraging a

special CXL channel instead of introducing additional side-

band protocols (Section IV-C). Lastly, a speculative approach

is proposed to harmoniously combine the address translation

caching scheme and data caching scheme (Section IV-D).

91

H-1

MemRd

DATA-X

II
H-2 MN H-1

MemRd

Cmp-S

H-2 MN
IE/M

I S
(a) (b)

RdOwn
invalid
GO-I

Cmp-E

I E

RdAny
DATA-X
GO-S/ME/M S

H-1

MemInv

H-2 MN
SS

(c)

CLFlush

GO-I
S I

DATA-X Cmp
S E
E M

Fig. 6. Primitives of SHA-CF: (a) fetch-exclusive, (b) fetch-share, (c)
invalidate-before-modify. Red arrows: CXL.cache messages. Black arrows:
CXL.mem messages; Curved arrow: the internal write operation in the host.

B. SHA-CF: Sharing-enabled Control Flow

In this section, we explain the proposed coherence control

flow, SHA-CF, that enables data sharing among multiple

computing nodes in SDM. The key idea behind SHA-CF is to

abstract all nodes, except for the requester node, as a memory

device and emulate snooping on multiple hosts by leveraging

CXL.cache messages. Figure 6 shows three scenarios of

crucial primitives of SHA-CF: fetch-exclusive, fetch-share,

and invalidate-before-modify. Note that all scenarios in this

figure assume two hosts (H-1 and H-2) and one memory

node (MN); however, SHA-CF can be generalized to support

multiple computing and memory nodes. Also, note that the key

principle of our SHA-CF strictly obeys transaction protocols

(i.e., request and response messages are paired) defined in the

CXL specification without any redefinition.

First, the fetch-exclusive primitive (Figure 6 (a)) defines the

control flow when a host (H-1) fetches data that is not shared

by other hosts. To do so, H-1 sends the MemRd message to

read data, DATA-X, from the memory node. Then, the memory

node broadcasts RdOwn to check the existence of DATA-X
in other hosts. Once the memory node receives GO-I with

an invalid line from H-2, the memory node sends Cmp-E
and DATA-X to let H-1 update the coherence state as E-state

(exclusive).

The fetch-share primitive is an essential control flow for

SDM to share data with multiple hosts. In Figure 6 (b),

we assume that H-1 initially holds DATA-X. Firstly, H-2

issues a read request for DATA-X to the memory node. The

memory node then broadcasts RdAny similar to the fetch-
exclusive primitive. Different from the case of fetch-exclusive,

H-1 responds DATA-X along with GO-S if the data is not

dirty. If DATA-X is dirty, GO-M is returned instead to forward

the up-to-date data to H-2. Note that memory node needs to

write back DATA-X if the memory node receives GO-M and

DATA-X, because GO-M indicates that DATA-X was modified

(M-state) in H-1.

The invalidate-before-modify primitive is provided to ad-

dress the inconsistency issue, as the cached data may be

modified. In Figure 6 (c), both hosts are sharing DATA-X,

which would be modified by H-1 in this case. Before up-

dating DATA-X, H-1 issues MemInv to the memory node to

notify back-invalidation. The memory node thereby broadcasts

CLFlush to invalidate DATA-X. Thus, H-2 responds with

H
Page fault

B MN H B MN

(a) (b)

H

MemRd/
MemWr

B MN

(c)

Free page
ralloc

allocate page
Get flag

Flag
update flag

Access

Cmp

rfree

allocate page
Get flag

Flag
update flag

Cmp

Page
table
walk

Get flag

Flag

MemRd/
MemWr

translated

Fig. 7. Control flows of remote memory management primitives: (a) ralloc,
(b) rfree, (c) rwalk. The blue arrows indicate CXL.io messages.

GO-I to the memory node after invalidating its cache line.

Then, H-1 modifies DATA-X after H-1 receives Cmp as

the response to MemInv. Note that the invalidate-before-
modify primitive can be implemented using back-invalidation

messages in CXL 3.0 with fewer transactions.

C. Remote Memory Management

In this subsection, we explain a mechanism to manage

page allocations in SDM. To prevent interference with normal

memory transactions, SDM exploits a vendor-defined message

field.4 The proposed mechanism incorporates three remote

page management primitives: ralloc, rfree, and rwalk. Figure 7

illustrates the procedures of three primitives, where one host

(H), backplane (B), and one memory node (MN) are shown

in the examples.

The ralloc primitive newly allocates a physical page of the

memory node. In Figure 7 (a), the computing node sends an

ralloc request to the backplane, as the host MMU triggers

the initial page fault (e.g., modified do_page_fault() in

the kernel). Then, the address translation unit (ATU) in the

backplane allocates a page and updates the corresponding

permission flag, thereafter sending the completion signal, Cmp,

to the computing node.

The rfree releases the allocated page of a memory node.

In Figure 7 (b), the computing node triggers the de-allocation

process of a remote page (e.g., modified deallocuvm()
in the kernel) and sends the rfree message. In this case, the

address translation unit de-allocates the requested page and

unmasks the corresponding permission flag.

The last primitive, rwalk, translates the local physical

address to the global physical address. In Figure 7 (c), a

normal memory request (e.g., MemRd) goes to the backplane.

The second-level page table walk then occurs by repeatedly

accessing the page table in the memory node. After acquiring

permission flags, the original request is redirected to the

memory node. Note that the translated information can also

be brought to the host, because the translation caching is

assumed for a stronger baseline (see Section II-A). Thus, the

proposed mechanism needs the modification of the host MMU

to manage three primitives and their responses. Furthermore,

as mentioned in [32], the coherency of cached translation is

managed using invalidation-based handling. For example, a

mapping from a local physical address to a global physical

4It is defined as the byte-15 of CXL.io transaction-level packet.

92

address is changed due to job migration. Subsequently, ATU

would invalidate the cached translation by dispatching requests

that carry the local physical address. In our system, since

address translation is managed through the CXL.io channel,

the invalidation can also be performed through the same

channel by defining a dedicated message with the byte-15 of

CXL.io.

D. Speculative Access

The speculative access in SDM is used to harmonically

combine the address translation caching scheme and data

caching scheme. The main idea of speculative access is access-
before-permit; that is, the memory request is speculatively

processed before checking the permission flag. Thus, the

computing node does not need to wait for the permission flags

from the memory node (see Figure 4 (b)).

After the permission flag arrives at the computing node,

the CXL home agent hardware performs the permission

verification process. For example, for a write request, the

original write request retires if the request is permitted on the

corresponding data; otherwise, the updated data must be rolled

back to the original state with the “replay data”. To support

this replay behavior, the speculative access requires a replay

buffer in the computing node. Once the roll-back is required,

the old data entries in the replay buffer are used to restore the

updated data back to the old state if the speculation fails for

the write request (i.e., write is not permitted). For the secure

operation of the system, if the data is illegitimately accessed by

the malicious session, access control violation handling will

isolate the corresponding session to prevent further requests

from that user session.

E. Modification of System Agent

To support CXL transactions in SDM, the system agent

must be modified accordingly. Figure 5 (b) drills down the

system agent in a computing node. A system agent cache

is located in the system agent to cache the remote data; the

data in the system agent cache can also be cached by L1-L3

caches of processor cores. Next to the system agent cache, the

host bridge multiplexes the memory request to either the local

DIMM controller or the CXL home agent; the home agent acts

as an interface between a computing node and a backplane.

Once the home agent receives the coherence-related message,

it redirects the message to the coherency bridge (COHB),

which reads and updates the coherence directory that is stored

in the local memory. Note that the coherence directory is an

essential feature to store the coherence state of each line in

the system agent cache. Without interrupting the processor, a

direct memory access (DMA) engine is introduced in the CXL

home agent to directly communicate with the local memory.

V. EXPERIMENTAL METHODOLOGIES

Simulating a multi-node disaggregated memory system on

a cycle-level simulator is challenging due to the prohibitively

long simulation time. Hence, following the methodologies in

prior works [10], [36], we develop a lightweight, in-house

TABLE II
SYSTEM CONFIGURATIONS.

Computing node [9]
L1 cache 8-way set associative, 32KB, 64B line, 1ns
L2 cache 4-way set associative, 256KB, 64B line, 4ns
L3 cache 16-way set associative, 2MB, 64B line, 40ns

Memory latency 80ns
Memory node

Latency 80ns
Network interconnection [32]

Latency 500ns

evaluation platform using Intel PIN tool [38]. In our simulator,

multiple computing nodes and one memory node are modeled;

statistics for each node are evaluated while running workloads

on the real machine. For speculative access, we optimistically

assume that speculation is always true, as access control cannot

be extracted by the user-level Intel PIN tool; furthermore, most

applications are read-intensive.

To manage coherence in our simulator, we use a global

table at a cacheline granularity [10]. Each entry consists of

an address and the coherence states of all computing nodes;

hence, proper transaction messages are generated when a

coherence state changes. For example, messages of fetch-
exclusive are issued if the table entry of the accessed line

initially has four I states. Then, one of the coherence states

corresponding to the accessing node becomes the E state.

Meanwhile, the statistics (e.g., the number of transactions

and the executed cycles for each memory operation) are

accumulated in the evaluation runtime. We also can obtain

the average memory access time (AMAT) using the afore-

mentioned statistics and the following formula:

AMAT = tpermit + tL1 +MRL1

× (tL2 +MRL2 × (tL3 +MRL3 × tRM))
(1)

tRM,avg = (
P∑

p

Np × TXp)× tnetwork/RMs

PINV−CF = {fetch dirty, fetch clean}
PSHA−CF = {fetch exclusive, fetch share,

invalid before mod}

(2)

In Equation (1), tpermit denotes the latency of the permis-

sion check; tLx denotes the cache hit latency at Lx-level

(see Table II); MRLx denotes the cache miss rate of Lx
cache, which can be obtained from the runtime statistics.

Equation (2) shows the tRM,avg (i.e., remote access latency)

of the system. P denotes a set of valid primitives for a

specific system. We use PINV−CF and PSHA−CF as P to

evaluate INV-CF and SHA-CF, respectively. In the equation,

Np denotes the number of a primitive at runtime; TXp denotes

the number of messages required for a primitive; tnetwork

denotes the network interconnection latency; RMs is the

number of remote memory requests. All equation parameters

are obtained from the runtime statistics.

93

Table II summarizes configurations. Note that data fully

reside in the memory node because the memory footprint of

disaggregated memory workloads is typically larger than a

local memory capacity. We use the same memory hierarchy

latency and network latency values used in [9] and [32],

respectively. Also, we execute 32 threads for each workload

for every simulation, where threads are uniformly assigned to

each compute node.

Workloads. We evaluate our design (SDM) with two bench-

mark suites that have distinctive characteristics: PARSEC

(computation-intensive) [8] and Intel GAP (memory-intensive)

[7]. PARSEC is a computation-intensive suite including large-

scale commercial workloads. We evaluate 11 workloads in

PARSEC benchmark suites: blackscholes, bodytrack, canneal,
dedup, facesim, ferret, fluidanimate, raytrace, streamcluster,

swaptions, and x264. In contrast, Intel GAP consists of graph

analytic workloads, which are likely more realistic in disaggre-

gated memory systems. We use two real-world graphs, twitter
and web, to which four kernels are applied, bfs (breadth-first

search), bc (betweenness centrality), cc (connected compo-

nents), and sssp (single-source shortest paths). Therefore, 8

graph workloads are evaluated by combining these various

graphs and kernels.

VI. RESULTS

We quantitatively evaluate three different configurations:

INV-CF, SDM (SHA-CF), and SDM-full (SHA-CF + spec-

ulative access). Note that address translation caching scheme

[32] is applied to INV-CF, which is regarded as the strong
baseline (see Section II-A).

A. Speedup Comparison

In this subsection, we evaluate IPC and average memory

latency of SDM. IPC implies the overall throughput of the

system; the average latency indicates the average duration

between the request generation and retirement. IPC is not

a good metric for evaluating multithreaded applications in a

real machine, because real microarchitectural components may

reduce the number of executed instructions spent on codes,

such as spin-lock loops in these applications [3]. However,

our in-house simulation is based on the PIN tool, and only

the user-level load/store instructions are injected into our

disaggregated memory system model. That is, our simulation

is similar to trace-driven simulation; hence, IPC can directly

show performance improvement in our case.

Figure 8 (a) presents IPC values normalized to INV-CF.

In general, SDM yields higher IPC for both benchmark

suites. For PARSEC, SDM shows 23% higher performance

(maximally 2.08×); however, some workloads (e.g., canneal,
raytrace) show minor improvement, because these workloads

have relatively low miss rates and low shared ratios and (see

Section III-B). For example, raytrace yields nearly 100% of

LLC miss rate according to our evaluation. On the other

hand, the performance improvement becomes more significant

when it comes to Intel GAP, as it yields 86% higher IPC

0.0

0.2

0.4

0.6

0.8

1.0

b
la

ck
sc

h
o
le

s

b
o
d

y
tr

ac
k

ca
n

n
ea

l

d
ed

u
p

fa
ce

si
m

fe
rr

et

fl
u
id

an
im

at
e

ra
y
tr

ac
e

st
re

am
cl

u
st

er

sw
ap

ti
o

n
s

x
2
6

4

G
eo

M
ea

n

N
or

m
al

iz
ed

 la
te

nc
y

INV-CF SDM SDM-full

0

2

4

6

8

10

b
la

ck
sc

h
o
le

s

b
o
d

y
tr

ac
k

ca
n

n
ea

l

d
ed

u
p

fa
ce

si
m

fe
rr

et

fl
u
id

an
im

at
e

ra
y
tr

ac
e

st
re

am
cl

u
st

er

sw
ap

ti
o

n
s

x
2
6

4

G
eo

M
ea

n

N
or

m
al

iz
ed

 IP
C INV-CF SDM SDM-full

(a)

(b)

0

1

2

3

4

5

b
c-

tw
it

te
r

b
c-

w
eb

b
fs

-t
w

it
te

r

b
fs

-w
eb

cc
-t

w
it

te
r

cc
-w

eb

ss
sp

-t
w

it
te

r

ss
sp

-w
eb

G
eo

M
ea

n

0.0

0.2

0.4

0.6

0.8

1.0

b
c-

tw
it

te
r

b
c-

w
eb

b
fs

-t
w

it
te

r

b
fs

-w
eb

cc
-t

w
it

te
r

cc
-w

eb

ss
sp

-t
w

it
te

r

ss
sp

-w
eb

G
eo

M
ea

n

Fig. 8. Speedup of different SDM configurations: (a) normalized IPC, (b)
normalized latency.

(maximally 4.48×). This is because, Intel GAP is memory-

intensive, resulting in higher benefits from the data sharing

among multiple hosts. Furthermore, SDM-full outperforms the

baseline by 4.16× and 2.23× for PARSEC and Intel GAP,

respectively. These values are also higher than SDM, because

the speculative access mechanism significantly reduces the

permission check overhead of remote write requests. For

example, the remote memory access ratio of SDM is 28%,

leading to significant performance improvement.

Figure 8 (b) shows average memory latency of SDM and

SDM-full over the baseline. In general, SDM and SDM-full

reduce 90% and 91% of memory latency, respectively, for

PARSEC. For Intel GAP, the latency is reduced by 66% and

67%. The latency improvement of SDM-full is relatively small

compared to SDM, because the speculative access buffers

requests in a replay buffer for higher processing throughput,

whereas the latency is the time difference between the gener-

ation point to the retirement point of requests.

B. Sensitivity to the Number of Compute Nodes

0

3

6

9

12

15

b
la

ck
sc

h
o
le

s

b
o
d

y
tr

ac
k

ca
n

n
ea

l

d
ed

u
p

fa
ce

si
m

fe
rr

et

fl
u
id

an
im

at
e

ra
y
tr

ac
e

st
re

am
cl

u
st

er

sw
ap

ti
o

n
s

x
2
6

4

G
eo

M
ea

n

N
or

m
al

iz
ed

 IP
C 2 nodes 4 nodes

8 nodes 16 nodes

(a)

(b)

0

1

2

3

4

5

b
la

ck
sc

h
o
le

s

b
o
d

y
tr

ac
k

ca
n

n
ea

l

d
ed

u
p

fa
ce

si
m

fe
rr

et

fl
u
id

an
im

at
e

ra
y
tr

ac
e

st
re

am
cl

u
st

er

sw
ap

ti
o

n
s

x
2
6

4

G
eo

M
ea

n

N
or

m
al

iz
ed

 IP
C 2 nodes 4 nodes

8 nodes 16 nodes

0

1

2

3

4

5

b
c-

tw
it

te
r

b
c-

w
eb

b
fs

-t
w

it
te

r

b
fs

-w
eb

cc
-t

w
it

te
r

cc
-w

eb

ss
sp

-t
w

it
te

r

ss
sp

-w
eb

G
eo

M
ea

n

0

1

2

3

4

5

6

b
c-

tw
it

te
r

b
c-

w
eb

b
fs

-t
w

it
te

r

b
fs

-w
eb

cc
-t

w
it

te
r

cc
-w

eb

ss
sp

-t
w

it
te

r

ss
sp

-w
eb

G
eo

M
ea

n

Fig. 9. IPC regarding different numbers of hosts: (a) SDM, (b) SDM-full.

A scalable industrial data center consists of numerous

computing nodes, which highly affect the overall system

94

performance. Therefore, this subsection discusses the system

performance by varying the number of computing nodes and

network latency. Figure 9 presents normalized IPC values

of SDM and INV-CF by varying the number of computing

nodes. Particularly, Figure 9 (a) shows the performance of

SDM, as the improvement becomes more notable with the

increased number of computing nodes for both benchmark

suites. For PARSEC, the IPC improvement reaches up to

67% when the number of computing nodes becomes 16.

For Intel GAP, the IPC is improved by up to 2.21×. Such

increasing tendencies indicate that the overhead of SHA-CF

coherence management is negligible, whereas the benefit from

data sharing capability is significant. In Figure 9 (b), the

speedup becomes further notable for SDM-full. The speedups

are 5.77× and 2.65× for PARSEC and Intel GAP, respectively,

when the number of computing nodes is extended to 16. In

general, the performance of graph workloads does not scale

well compared to computation-intensive workloads. As the

number of nodes grows, the shared data in the memory node

will be accessed by different nodes with higher probability.

Consequently, the coherence management between different

compute nodes becomes more frequent. Furthermore, the

memory intensity of Intel GAP is higher than that of PARSEC,

yielding lower improvement.

0.08

0.12

0.16

0.20

0.24

0.28

2 4 8 16

N
or

m
al

iz
ed

 la
te

nc
y

Number of computing nodes

SDM

SDM-full

Fig. 10. Sensitivity analysis of latency regarding different numbers of
computing nodes.

Figure 10 shows the average memory latency of SDM and

SDM-full normalized to INV-CF, regarding different numbers

of computing nodes. Each point value is normalized to INV-

CF with the same number of computing nodes. Similar to

IPC improvement, the latency reduction rate also becomes

more significant, as the number of computing nodes increases.

For example, the latency reduction rate achieves 91% for a

disaggregated memory system having 16 computing nodes. In

conclusion, SDM is scalable regarding the increasing number

of computing nodes.

C. Sensitivity to the Network Latency

The network latency would become a major bottleneck due

to its high latency; the reason for the high latency can be

slow interconnection speed or the arbitration contention by

numerous nodes. Specifically, the latency of network inter-

connection ranges from a low of about 100 ns to a high

of about 1000 ns, according to previous announcements of

network interconnection [26], [49]. In this subsection, the

average memory access latency is evaluated by varying the

network interconnection latency.

0.08

0.13

0.18

0.23

0.28

0.33

100 250 500 750 1000

N
or

am
liz

ed
 la

te
nc

y

Network latency (ns)
SDM(2 nodes) SDM-full(2 nodes) SDM(4 nodes)
SDM-full(4 nodes) SDM1(8 nodes) SDM-full(8 nodes)
SDM(16 nodes) SDM-full(16 nodes)

15%

6%

Fig. 11. Sensitivity analysis of latency regarding network latency and numbers
of computing nodes.

Figure 11 shows the average memory latency with varying

network latency and the number of computing nodes, where

all results are normalized to INV-CF. In general, both SDM

and SDM-full yield larger latency reduction rates, as both the

network latency value and the number of computing nodes

become larger. For example, for SDM with two computing

nodes, the latency reduction rate enlarges from 69% to 75%

(i.e., 6%) when the network latency varies from 100 ns to

1000 ns, and SDM-full yields 1% lower latency compared to

SDM. Furthermore, for the 1000 ns of network latency, the

latency reduction rate is increased by 15% when the number

of computing nodes doubles from two. Consequently, SDM

facilitates a high-performance disaggregated memory system

with high scalability, even for high-latency network.

VII. RELATED WORK

Table III shows the qualitative comparison of related works

of disaggregated memory systems. This section discusses the

works related to SDM in detail.

Disaggregated memory as swap space. Disaggregated mem-

ory has been utilized as a faster swap space compared to

storage devices. Scarce physical memory incurs swap oper-

ations between main memory and storage devices, leading to

significant performance degradation. Therefore, the latency of

the swap space allocated in storage devices determines the

overall performance of a system. Previous works leverage

a memory node as swap space to notably reduce the swap

latency [5], [21], [36], because accessing memory devices in

the memory node requires much shorter latency than accessing

storage devices. In [36], [37], hypervisors are augmented to

treat remote memory nodes in disaggregated memory systems

as fast swap space, while preventing modification on both

OSes and applications. In [5], a swap mechanism (or swap sys-

tem) is directly developed on a local operating system rather

than on a hypervisor to further reduce interface overheads.

To simplify the implementation, the authors of [21] propose

a swap mechanism by simply adding a virtual block device

interface on a local operating system. However, neither faster

nor larger swap space addresses the memory shortage issue,

because the modern operating system throws the OOM killer

and incurs system failure if a system runs out of physical

memory. On the other hand, SDM expands the main memory

95

TABLE III
QUALITATIVE COMPARISON OF DIFFERENT DISAGGREGATED MEMORY SYSTEMS.

Architecture Transparency Granularity Role Interconnect protocol Coherency of compute nodes

PS [36] page swap space PCIe not supported

FaRM [17] page memory pool one-sided RDMA not supported

Grappa [40] page memory pool Infiniband software synchronization

Infiniswap [21] page swap space one-sided RDMA not supported

LegoOS [46] page memory pool two-sided RDMA not supported

Remote Regions [2] page memory pool RoCE software synchronization

DCM [31] page memory pool Infiniband not supported

XMemPod [11] page memory pool Infiniband not supported

FastSwap [36] page swap space one-sided RDMA not supported

pDPM [50] page memory pool one- & two-sided RDMA not supported

RACE [53] page memory pool one-sided RDMA atomic update (RDMA ATOMIC)

Kona [10] cacheline memory pool one-sided RDMA not supported

DeACT [32] page memory pool unknown not supported

MIND [34] page memory pool one-sided RDMA customized hardware manager

Clio [22] page memory pool customized interconnect software synchronization

SDM (proposed) cacheline memory pool CXL hardware (a feature from CXL)

pool based on a disaggregated memory system, potentially

leading to higher system reliability.

Abstraction of disaggregated memory. Several works have

developed frameworks that abstracts the remote memory man-

agement mechanisms [2], [17], [22], [40], [50], [53]. For

example, in [2], a new file system is proposed to access

remote memory as files in volatile storage. Similar to Intel

PMDK [25] that provides persistent objects, [17] and [40]

implement application-specific object classes to simplify the

remote memory management for in-memory database and

graph applications, respectively. In [53] and [50], application-

specific interfaces are developed to reduce the access latency

of hashing and key-value store data structures, respectively.

In [22], a malloc-like interface, which minimizes the appli-

cation modification, is developed based on its own hardware

platform. Nevertheless, these approaches require application

modifications, making programs error-prone. In contrast, our

SDM facilitates user-transparent remote memory accesses and

memory management mechanisms.

User-transparent main memory pool. Some prior works

have been proposed to develop high-capacity main memory

pools based on disaggregated memory systems that are trans-

parent to user-level applications [10], [11], [31], [32], [34],

[46]. For example, [46] is the first memory pool disaggre-

gation work that splits operating system kernels at device

granularity. In [11], a hierarchical memory orchestration sys-

tem is introduced to transparently allocate physical memory

according to the access latency of different devices (i.e., local

memory, remote memory, and storage devices). In [34], the

remote memory management mechanisms are built in the

programmable switch, minimizing extra costs on computing

nodes and memory nodes. However, these works access the

remote memory by always triggering page fault, leading to

frequent context switches between the application and the

operating system. To overcome this limitation, a platform

that accesses the remote memory in a fine-grained manner

is proposed [10]; it hooks memory management function calls

(e.g., malloc and free) using dedicated hardware primitives.

Still, this approach does not consider the data coherence

among multiple computing nodes.

In conclusion, most works access remote memory at page

granularity with RDMA, amplifying memory transaction over-

heads. Furthermore, several works resolve the data coherency

among computing nodes using software-based synchronization

methods, which let a process or a thread exclusively access the

critical section. Such approaches generally incur significant

performance overheads. In contrast, our SDM accesses the

remote memory at cacheline granularity owing to the intrinsic

characteristics of CXL while preserving the coherency.

VIII. CONCLUSION

This paper proposes a user-transparent cache coherent dis-

aggregated memory system, SDM, by fully leveraging the

transaction-level cache coherent protocol, CXL; it is the first

academic work of a data sharing-enabled, CXL-based multi-

host disaggregated memory system. Our SDM employs a novel

cache coherent control flow, SHA-CF, to facilitate data sharing

between multiple hosts. The SHA-CF emulates the snooping

among multiple hosts without violating the CXL specification.

To manage remote memory resources, we also propose several

essential primitives; our management mechanisms leverage

the reserved message types in the CXL.io packet. Thus,

the normal memory transaction channel is not disturbed.

Lastly, speculative access is proposed to efficiently combine

two orthogonal caching schemes by simply adding a tiny

replay buffer to the computing node. Our evaluation results

show that the proposed architecture significantly improves the

performance compared to the strong baseline. We envision

that our proposed CXL-based architecture would pave a new

way for a scalable, high-performance disaggregated memory

system in the future.

96

ACKNOWLEDGMENT

We appreciate the anonymous reviewers for their valuable

comments to improve the quality of our paper. This work was

supported by a research grant from SK Hynix and by the

Ministry of Science and ICT under the ITRC support program

(IITP-2023-RS-2022-00156295) and the artificial intelligence

semiconductor support program to nurture the best talents

(IITP-2023-RS-2023-00256081) supervised by the IITP (Insti-

tute for Information & Communications Technology Planning

& Evaluation). The Institute of Engineering Research at Seoul

National University provided research facilities for this work.

Jaewoong Sim is the corresponding author.

REFERENCES

[1] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kuri-
hara, B. H. Lim, G. Maa, D. Nussbaum, M. Parkin, and D. Yeung, “The
mit alewife machine: A large-scale distributed-memory multiprocessor,”
Tech. Rep., 1991.

[2] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard, J. Gandhi,
S. Novaković, A. Ramanathan, P. Subrahmanyam, L. Suresh, K. Tati,
R. Venkatasubramanian, and M. Wei, “Remote regions: a simple abstrac-
tion for remote memory,” in 2018 USENIX Annual Technical Conference
(USENIX ATC), 2018.

[3] A. Alameldeen and D. Wood, “Ipc considered harmful for multiproces-
sor workloads,” IEEE Micro, vol. 26, no. 4, pp. 8–17, 2006.

[4] K. Alnaes, E. Kristiansen, D. Gustavson, and D. James, “Scalable
coherent interface,” in Proceedings of International Conference on
Computer Systems and Software Engineering (CompEuro), 1990.

[5] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can far memory improve job
throughput?” in Proceedings of the Fifteenth European Conference on
Computer Systems (EuroSys), 2020.

[6] AMD. (2022) 4th gen amd epyc processor architecture. [Online].
Available: https://www.amd.com/en/campaigns/epyc-9004-architecture

[7] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
2015. [Online]. Available: https://arxiv.org/abs/1508.03619

[8] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-
multiprocessors,” in Proceedings of the 5th Annual Workshop on Mod-
eling, Benchmarking and Simulation, 2009.

[9] B. Brett. (2016) Memory performance in a nutshell. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical
/memory-performance-in-a-nutshell.html

[10] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A. Maruf, O. Mutlu, and
A. Kolli, “Rethinking software runtimes for disaggregated memory,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2021.

[11] W. Cao and L. Liu, “Hierarchical orchestration of disaggregated mem-
ory,” IEEE Transactions on Computers, vol. 69, no. 6, pp. 844–855,
2020.

[12] J. B. Carter, C.-C. Kuo, and R. Kuramkote, “A comparison of software
and hardware synchronization mechanisms for distributed shared mem-
ory multiprocessors,” Tech. Rep., 1996.

[13] CCIX, “Cache coherent interconnect for accelerators,” Sep 2019.
[14] I. Cutress. (2015) The intel broadwell xeon e3 v4 review: 95w, 64w

and 35w with edram. [Online]. Available: https://www.anandtech.com/
show/9532/the-intel-broadwell-xeon-e3-v4-review-95w-65w-35w-12
85-1285l-1265

[15] CXL, “Compute express link specification revision 2.0,” Oct 2020.
[16] CXL, “Compute express link (cxl) specification revision 3.0,” 2022.

[Online]. Available: https://www.computeexpresslink.org/download-th
e-specification

[17] A. Dragojevi, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
remote memory,” in 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2014.

[18] A. Farmahini-Farahani, S. Gurumurthi, G. Loh, and M. Ignatowski,
“Challenges of high-capacity dram stacks and potential directions,” in
Proceedings of the Workshop on Memory Centric High Performance
Computing, 2018.

[19] F. Glaser, G. Tagliavini, D. Rossi, G. Haugou, Q. Huang, and L. Benini,
“Energy-efficient hardware-accelerated synchronization for shared-l1-
memory multiprocessor clusters,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 3, pp. 633–648, 2020.

[20] D. Gouk, S. Lee, M. Kwon, and M. Jung, “Direct access, High-
Performance memory disaggregation with DirectCXL,” in 2022 USENIX
Annual Technical Conference (USENIX ATC), 2022.

[21] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with infiniswap,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2017.

[22] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang, “Clio: A hardware-
software co-designed disaggregated memory system,” in Proceedings of
the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2022.

[23] B. Huang, L. Jin, Z. Lu, M. Yan, J. Wu, P. C. Hung, and
Q. Tang, “Rdma-driven mongodb: An approach of rdma enhanced
nosql paradigm for large-scale data processing,” Information Sciences,
vol. 502, pp. 376–393, 2019. [Online]. Available: https://www.scienced
irect.com/science/article/pii/S0020025519305869

[24] Intel, “Intel® 64 and ia-32 architectures software developer’s manual
volumn 3a: System programming guide, part 1.” [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/i
ntel-sdm.html

[25] Intel. Persistent memory development kit. [Online]. Available: https:
//pmem.io/pmdk/

[26] Intel, “Intel omni-path architecture (packet integrity protection and
local link integrity counter white paper),” 2017. [Online]. Available:
https://www.intel.com/content/dam/support/us/en/documents/network-
and-i-o/fabric-products/IntelOPA PktIntegProt WP J79955 v1 0.pdf

[27] Intel, “Intel architecture day 2021,” 2021. [Online]. Available:
https://www.intel.com/content/www/us/en/newsroom/resources/press-k
it-architecture-day-2021.html

[28] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory
module,” 2019. [Online]. Available: http://arxiv.org/abs/1903.05714

[29] M. Jung, “Hello bytes, bye blocks: Pcie storage meets compute express
link for memory expansion (cxl-ssd),” in Proceedings of the 14th ACM
Workshop on Hot Topics in Storage and File Systems, 2022.

[30] X. Z. Khooi, C. H. Song, and M. C. Chan, “Towards a framework
for one-sided rdma multicast,” in Proceedings of the Symposium on
Architectures for Networking and Communications Systems (ANCS),
2022.

[31] K. Koh, K. Kim, S. Jeon, and J. Huh, “Disaggregated cloud memory with
elastic block management,” IEEE Transactions on Computers, vol. 68,
no. 1, pp. 39–52, 2018.

[32] V. R. Kommareddy, C. Hughes, S. D. Hammond, and A. Awad, “Deact:
Architecture-aware virtual memory support for fabric attached memory
systems,” in IEEE International Symposium on High-Performance Com-
puter Architecture (HPCA), 2021.

[33] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. Hennessy, “The stanford flash multiprocessor,” in
Proceedings of the 21st Annual International Symposium on Computer
Architecture (ISCA), 1994.

[34] S.-s. Lee, Y. Yu, Y. Tang, A. Khandelwal, L. Zhong, and A. Bhat-
tacharjee, “Mind: In-network memory management for disaggregated
data centers,” in Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP), 2021.

[35] H. Li, D. S. Berger, L. Hsu, D. Ernst, P. Zardoshti, S. Novakovic,
M. Shah, S. Rajadnya, S. Lee, I. Agarwal, M. D. Hill, M. Fontoura,
and R. Bianchini, “Pond: Cxl-based memory pooling systems for cloud
platforms,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2023.

[36] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated memory for expansion and sharing in blade
servers,” in Proceedings of the 36th Annual International Symposium
on Computer Architecture (ISCA), 2009.

[37] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan,
and T. F. Wenisch, “System-level implications of disaggregated mem-
ory,” in IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2012.

97

[38] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2005.

[39] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-
tacharya, C. Petersen, M. Chowdhury, S. Kanaujia, and P. Chauhan,
“Tpp: Transparent page placement for cxl-enabled tiered-memory,” in
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2023.

[40] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and
M. Oskin, “Latency-Tolerant software distributed shared memory,” in
2015 USENIX Annual Technical Conference (USENIX ATC), 2015.

[41] L. K. Organization. Out of memory management. [Online]. Available:
https://www.kernel.org/doc/gorman/html/understand/understand016.ht
ml

[42] J. T. Pawlowski, “Hybrid memory cube (hmc),” in 2011 IEEE Hot Chips
23 Symposium (HCS), 2011.

[43] G. Rodrigues. (2009) Taming the oom killer. [Online]. Available:
https://lwn.net/Articles/317814/

[44] Samsung. (2021) Samsung brings in-memory processing power to
wider range of applications. [Online]. Available: https://news.samsung
.com/global/samsung-brings-in-memory-processing-power-to-wider-r
ange-of-applications

[45] Samsung. (2022) Samsung electronics introduces industry’s first 512gb
cxl memory module. [Online]. Available: https://news.samsung.com/us/
samsung-electronics-introduces-industrys-first-512gb-cxl-memory-mo

dule/
[46] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “LegoOS: A disseminated,

distributed OS for hardware resource disaggregation,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018.

[47] SKHynix. (2022) Sk hynix develops ddr5 dram cxl memory to
expand the cxl memory ecosystem. [Online]. Available: https:
//news.skhynix.com/

[48] Tensorflow. Use tpus. [Online]. Available: https://www.tensorflow.org/
guide/tpu?hl=en

[49] T. Trader. (2021) With new owner and new roadmap, an independent
omni-path is staging a comeback. [Online]. Available: https:
//www.hpcwire.com/2021/07/23/with-new-owner-and-new-roadmap-an
-independent-omni-path-is-staging-a-comeback/

[50] S.-Y. Tsai, Y. Shan, and Y. Zhang, “Disaggregating persistent memory
and controlling them remotely: An exploration of passive disaggregated
Key-Value stores,” in 2020 USENIX Annual Technical Conference
(USENIX ATC), 2020.

[51] K. Wu, A. Arpaci-Dusseau, R. Arpaci-Dusseau, R. Sen, and K. Park,
“Exploiting intel optane ssd for microsoft sql server,” in Proceedings
of the 15th International Workshop on Data Management on New
Hardware, 2019.

[52] J. Yang, B. Li, and D. J. Lilja, “Exploring performance characteristics of
the optane 3d xpoint storage technology,” ACM Trans. Model. Perform.
Eval. Comput. Syst., vol. 5, no. 1, pp. 1–28, 2020.

[53] P. Zuo, J. Sun, L. Yang, S. Zhang, and Y. Hua, “One-sided RDMA-
Conscious extendible hashing for disaggregated memory,” in 2021
USENIX Annual Technical Conference (USENIX ATC), 2021.

98

