
NeuRex: A Case for Neural Rendering Acceleration
Junseo Lee Kwanseok Choi Jungi Lee Seokwon Lee Joonho Whangbo Jaewoong Sim

Seoul National University
{junseo.lee, kwanseok.choi, jungi.lee, seokwon.lee, joonho0320, jaewoong}@snu.ac.kr

ABSTRACT
This paper presents NeuRex, an accelerator architecture that ef-
ficiently performs the modern neural rendering pipeline with an
algorithmic enhancement and supporting hardware. NeuRex lever-
ages the insights from an in-depth analysis of the state-of-the-art
neural scene representation to make the multi-resolution hash en-
coding, which is the key operational primitive in modern neural
renderings, more hardware-friendly and features a specialized hash
encoding engine that enables us to effectively perform the primitive
and the overall rendering pipeline. We implement and synthesize
NeuRex using a commercial 28nm process technology and evaluate
two versions of NeuRex (NeuRex-Edge, NeuRex-Server) on a range
of scenes with different image resolutions for mobile and high-end
computing platforms. Our evaluation shows that NeuRex achieves
up to 9.88× and 3.11× speedups against the mobile and high-end
consumer GPUs with a substantially small area overhead and lower
energy consumption.

CCS CONCEPTS
•Computer systems organization→Neural networks; •Com-
puting methodologies→ Rendering.

KEYWORDS
Neural rendering, NeRF, neural networks, machine learning, accel-
erators
ACM Reference Format:
Junseo Lee, Kwanseok Choi, Jungi Lee, Seokwon Lee, Joonho Whangbo,
Jaewoong Sim. 2023. NeuRex: A Case for Neural Rendering Acceleration.
In Proceedings of the 50th Annual International Symposium on Computer
Architecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3579371.3589056

1 INTRODUCTION
Neural rendering is a new and rapidly emerging approach that
synthesizes photo-realistic images or videos in a controllable way
using deep neural networks (DNNs) [55]. By encoding scenes and
objects in the weights of deep neural networks, neural rendering
implicitly maps input coordinates into some numeric values such
as colors or radiance. Compared to traditional explicit 3D represen-
tations such as polygonal meshes, voxels, or point clouds, implicit

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589056

neural scene representations allow for capturing the fine details of
complex surfaces or shapes in a more compact way.

While neural rendering is a promising approach to a variety
of tasks in graphics such as image super-resolution [11, 33] and
novel view synthesis [35, 39, 51], it requires a significant amount
of computation to achieve high-quality renderings. Conventional
neural rendering is based on the multi-layer perceptron (MLP)
network, which consists of a set of fully-connected layers. The MLP
needs to be queried millions of times to render an image because
every sample point along the ray for each pixel needs to run through
the neural networks to produce an output value that corresponds
to the input coordinate. This makes the neural rendering process
extremely slow even on the high-end consumer GPUs.

As such, there has been a plethora of recent works that aim to
reduce the training and rendering time of neural representations
via algorithmic enhancements [10, 17, 18, 23, 30, 37, 38, 48, 52, 58].
Despite the active research in the graphics community and the
importance of neural scene representations, however, there has
been little to no work that systematically evaluates the performance
of the workload on today’s hardware systems and helps understand
its architectural implications from the hardware perspective.

In this work, we start by investigating the characteristics of
modern neural rendering algorithms and present an in-depth char-
acterization of several representative models to understand their
architectural implications along with compute and memory require-
ments. In particular, we performed a detailed characterization of the
state-of-the-art neural scene representation [37] that substantially
reduces the training and rendering time while also improving the
quality of rendered views compared to others. To do so, instead
of using a large MLP with simple input encodings, the state-of-
the-art exploits the direction of using a smaller MLP with multiple
hash encoding tables that contain trainable feature vectors (i.e., in-
put encoding parameters), each of which captures different grid
resolutions.

Although it performs significantly better than prior works in
both rendering time and quality, we observe that themulti-resolution
hash encoding primitive used in the state-of-the-art model is not
hardware-friendly and leads to several challenges and inefficien-
cies in executing the neural rendering pipeline on general-purpose
computing platforms. Our profiling results on commodity GPUs
reveal that it takes more time to perform multi-resolution hash
encodings than MLP computation, and these two operations are
serialized in execution. In addition, due to the irregular access na-
ture of hash tables, the large encoding table needs to fit into the
on-chip cache; otherwise, the time spent on encoding lookups sig-
nificantly increases, and so does the overall training and rendering
time. Furthermore, each hash entry access only uses four out of
64 bytes of data from a cacheline or off-chip memory, leading to a
substantial waste of the memory bandwidth. The compute cores

https://doi.org/10.1145/3579371.3589056
https://doi.org/10.1145/3579371.3589056

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

Iteration

①

③
Po

si
tio

na
l E

nc
od

in
g

Feat. 0

Feat. 1

Feat. 2

Feat. 3

Feat. 4
Feat. 5

	(𝑥!, 𝑦!, 𝑧!, 𝜃!, 𝜙!)

	(𝑥", 𝑦", 𝑧", 𝜃", 𝜙")

	(𝑥#, 𝑦#, 𝑧#, 𝜃#, 𝜙#)

	(𝑥$, 𝑦$, 𝑧$, 𝜃$, 𝜙$)

	(𝑥%, 𝑦%, 𝑧%, 𝜃%, 𝜙%)

	 𝑥&, 𝑦&, 𝑧&, 𝜃&, 𝜙&

Encoded Features

④ MLP
𝑇! < 𝑇"!#?

Color & Density

Yes
No

Sample Next Step Points (②)

!

Final Color of Pixels

Sampled Points

Viewpoint

①
Ray

Generation

②
Point

Sampling

③
Positional
Encoding

④ MLP
⑤

Ray
Termination

⑥
Volume

Rendering
Rendered Image

②
⑤

⑥

Figure 1: A volume rendering pipeline with Neural Radiance Fields (NeRF).

are also underutilized because the MLP is small in size, and they
are mostly idle when performing input encodings and hash table
lookups. In short, general-purpose GPUs are an imbalanced de-
sign point and are inefficient in running the state-of-the-art neural
rendering models.

In this paper, we present NeuRex, a neural rendering accelerator
that efficiently performs modern neural graphics computation by
making changes in the execution flow of the rendering pipeline with
algorithmic enhancements and supporting hardware. NeuRex builds
on the key observations from our in-depth analysis to make multi-
resolution hash encodings more hardware-friendly and features
a specialized hash encoding engine that enables us to effectively
perform the primitive and the overall neural rendering pipeline.

The key idea behind our algorithmic enhancement is to parti-
tion the input coordinate grid into several subgrids, each of which
owns a portion of a large hash encoding table. We then arrange the
processing of input coordinates such that we complete processing
one subgrid for all resolutions before moving onto another. This
restricts hash table access to a range of consecutive entries, thereby
allowing the hardware accelerator to load only a part of the hash
table to the on-chip memory at a time; thus, hardware accelera-
tors do not need to employ a multi-megabyte on-chip memory to
perform the multi-resolution hash encoding primitive efficiently.
This also enables the opportunities to break the serialized execution
of input encodings and MLP computation and overlap these two
operations effectively with supporting hardware, thereby leading
to better utilization of overall compute and memory resources in
the accelerator.

We implement the hardware components of NeuRex in RTL
and synthesize them using a commercial 28nm process node. For
performance evaluation with a detailed off-chip memory timing
model, we build a cycle-level simulator that models the NeuRex
architecture and evaluate it on a set of popular tasks and datasets
in graphics. Our evaluation shows that two variants of NeuRex
achieve up to 9.88× and 3.11× speedups compared to the represen-
tative mobile (Jetson Xavier NX; Volta GPU; 12nm) and high-end
consumer (RTX 3070; Ampere GPU; 8nm) computing platforms,
with a small area budget of 3.14mm2 and 21.37mm2. In summary,
this paper makes the following contributions:

• To our knowledge, this is the first work to comprehensively
analyze the performance bottlenecks of themodern neural scene
representation on today’s computing platforms and identify the
root causes of the performance inefficiencies.

• We propose an algorithmic enhancement that makes multi-
resolution hash encodings more hardware-friendly to efficiently
perform the primitive without the need for a multi-megabyte
on-chip memory.

• We present NeuRex, a hardware accelerator that effectively per-
forms neural graphics computation byminimally extending the
existing DNN accelerators. It features a specialized hash encod-
ing engine tailored to the needs of modern neural renderings.

2 BACKGROUND
In this section, we briefly introduce neural scene representations
and discuss the characteristics of the ML-based rendering method.

2.1 Neural Rendering
Neural rendering combines the ideas from classical computer graph-
ics with the recent advances in deep neural networks to render
images or videos. At a high level, a neural rendering pipeline learns
a representation of a mathematical function that parameterizes a
2D or 3D scene using a multi-layer perceptron (MLP) as a function
approximator. Depending on the tasks and objectives, the MLP
learns different implicit representations such as the mapping from
2D coordinates to RGB colors of an image [32] or the mapping from
3D coordinates to the distance to a surface [54]. Note that although
the specific tasks may differ, they share the common idea of using
MLPs as function approximators. In the following, we take as a rep-
resentative task a recent breakthrough of neural representations for
volume rendering, called Neural Radiance Fields (NeRF), to discuss
state-of-the-art algorithms in this field.

2.2 Neural Radiance Fields (NeRF)
A Neural Radiance Field (NeRF) is a method that generates novel
views of complex 3D scenes from a partial set of 2D images. In
NeRF, scenes are represented implicitly in the weights of an MLP

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

MLP
Sampled Point
(𝑥, 𝑦, 𝑧, 𝜃, 𝜙)

Level 𝟎

Hash Tables

Level 𝟏

Level 𝑳 − 𝟏

…

Back Prop.Forward

MLP
Sampled Point
(𝑥, 𝑦, 𝑧, 𝜃, 𝜙) 		𝒇

Positional
Encoding

Back Prop.Forward

(a) Original NeRF: function-based positional encodings with a large MLP

(b) Instant-NGP: trainable multi-resolution hash tables with a small MLP

Figure 2: Model comparison between the original NeRF [35] and
Instant-NGP [37].

using radiance fields.1 The MLP weights are trained with the partial
set of 2D images, and the trained weights are used for rendering
(inference) from a specific viewpoint.

Figure 1 shows how NeRF renders an image from a novel view-
point. First, it generates and shoots a ray for each pixel of the image
from the camera viewpoint. It then takes 𝐾 samples (s1, s2, ..., sk)
along the ray, each of which (si) is a five-dimensional vector that
consists of a 3D position (𝑥i, 𝑦i, 𝑧i) and a 2D viewing direction (\i,
𝜙i) of the ith sample point. The five-dimensional input vector is
mapped to a higher dimensional space through the stage called po-
sitional encodings. We feed this encoded feature after the positional
encoding into the neural network (MLP) to obtain the color and
density (ci, 𝜎i) of the sample point. After obtaining all the color
and density values from the sampled points, the final pixel color Ĉ
is computed by alpha-blending the set of color and density values
along the ray, as shown in Equation 1. The transmittance Ti, which
is the probability of the ray reaching a point without colliding with
other objects, is computed by using the density (𝜎i) and the distance
between adjacent samples (𝛿i).

Ĉ =

K∑
i=1

Ti𝛼ici, (1)

where Ti = exp(−∑i−1
j=1 𝜎j𝛿j) and 𝛼i = 1 − exp(−𝜎i𝛿i).

Computation Cost. To render an image, this process needs to be
repeated for every pixel in the image, which leads to a large num-
ber of MLP evaluations. For example, rendering a𝑊 × 𝐻 image
requires𝑊 × 𝐻 × 𝐾 times MLP evaluations. To reduce the compu-
tation cost, NeRF models may adopt algorithm-level optimization
techniques such as early ray termination (ERT) and empty space
skipping (ESS) [30, 48]. When the ray meets the surface, we can
skip the computation for the points behind the surface. It is the idea
of the ERT, and we can detect the solid surface when the accumu-
lated transmittance (Ti) gets lower than the pre-defined threshold
value. The ESS is another optimization technique that ignores the
computation of the sample points in an empty space.

1The radiance field consists of all light rays that flow through every point in every
direction in a 3D space.

2.3 NeRF Model Architectures
The original NeRF model [35] is a pioneering work that demon-
strates the benefit of using positional encodings and radiance fields,
which inspires a large number of subsequent works that build
upon the original NeRF. To understand the performance charac-
teristics and rendering quality of different NeRF model structures,
we choose four representative models for comparisons, NeRF [35],
mip-NeRF [6], NSVF [30], and Instant-NGP [37], which we classify
into two categories.
Original NeRF-based Models. In the original NeRF, the fully-
connected (FC) layers in the MLP are separated into two parts: one
for density (𝜎i) computation and the other for color (ci) computa-
tion. The first part consists of 8 FC layers (with 256 channels per
layer) that produce the density value and a 256-dimensional feature
vector. The feature vector is then concatenated with the encoded
viewing direction (𝐹 (\i, 𝜙i)), and the resulting vector is fed into one
additional FC layer with 128 channels to produce the color value. It
is the forerunner in NeRF, but it takes prohibitively long training
and inference time due to the large and deep FC layers.

mip-NeRF attempts to address the issue of the original NeRF that
the rendering quality is significantly degraded when it renders a
different resolution from the trained images. To mitigate the prob-
lem, mip-NeRF uses information from multiple points in a circular
region instead of a single critical point. However, the main model
architecture is similar to the original NeRF, so it is still bottlenecked
by the long latency of MLP computation. It also does not noticeably
improve the rendering quality when rendering images of the same
resolution. Neural Sparse Voxel Fields (NSVF) exploits a sparse
voxel representation to train the structure that captures the empti-
ness of a scene along with MLP weights. It skips computation for
empty voxels to accelerate training and rendering time, but it is
still slow due to large MLPs.
Parametric Encoding-basedModels. Figure 2 compares the orig-
inal NeRF-based models with Instant-NGP. The key difference of
Instant-NGP compared to the previous NeRF models is the use
of a parametric encoding with multi-resolution hash tables rather
than using a fixed input encoding. All the models previously men-
tioned use an untrainable input encoding, such as frequency encod-
ings [35]. Although it is useful to extract high-dimensional features
from input position vectors, it is unavoidable to use a large MLP
to achieve reasonable rendering quality. Instead of using a fixed
input encoding function, Instant-NGP employs several trainable
hash tables for input encodings.2 This enables the use of a much
smaller MLP and reduces the computation cost, thereby improving
the training and rendering speed while also achieving high-quality
renderings.

2.4 Performance and Rendering Quality
To understand the performance and rendering quality of the rep-
resentative NeRF models, we compare them using four different
datasets: two synthetic (Syn-NeRF [35], Syn-NSVF [30]) and two
real-world (BlendedMVS [57], Tanks&Temples [27]) datasets. We
also choose the scenes with varying image resolutions to have more
generalized results.

2The encoding parameters are also learned alongwith theMLPweights during training.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

Table 1: Peak signal-to-noise ratios (PSNR) comparison.

Dataset Syn-NeRF Syn-NSVF BlendedMVS Tanks&Temples
Scene Mic Palace Fountain Family

(800×800) (800×800) (768×576) (1920×1080)
NeRF [35] 16.10 15.96 14.73 14.44
mip-NeRF [6] 15.82 16.04 15.14 14.64
NSVF [30] 30.84 28.58 23.27 26.73
Instant-NGP [37] 40.33 35.86 30.70 33.42

1

10

100

1000

10000

100000

1000000

N
eR

F

m
ip

-N
eR

F

N
SV

F

In
st

an
t-N

G
P

N
eR

F

m
ip

-N
eR

F

N
SV

F

In
st

an
t-N

G
P

N
eR

F

m
ip

-N
eR

F

N
SV

F

In
st

an
t-N

G
P

N
eR

F

m
ip

-N
eR

F

N
SV

F

In
st

an
t-N

G
P

 Syn-NeRF
(Mic)

Syn-NSVF
(Palace)

BlendedMVS
(Fountain)

Tanks &Temples
(Family)

R
en

de
rin

g
tim

e
(m

s)

106

105

104

103

102

101

Figure 3: Rendering time of four representative NeRFmodels across
various datasets (log scale).

Table 1 compares the peak signal-to-noise ratio (PSNR) of the
four representative models after training.3 We train each NeRF
model for 100K iterations (which takes a few to tens of hours)
except for Instant-NGP. Although we train Instant-NGP for less
than 10 minutes (31K iterations), it reaches a significantly higher
PSNR compared to others across all the datasets.

Figure 3 shows the rendering (inference) time of each trained
model.4 With the best quality of a rendered image, the rendering
time of Instant-NGP is also significantly lower than others. Note
that the original NeRF-based models can hardly be used in real-
time or on-device renderings as they render images at less than one
frame per second (FPS). In particular, for the real-world scene with
1920×1080 FHD resolution (Family), it takes about 8∼100 seconds to
render a single image. In contrast, we see that Instant-NGP renders
a single image significantly faster than others.

In short, the original NeRF-based models require a significant
amount of computation as every sample point needs to run through
the large and deep MLP. Considering the points are sampled from
a single ray, and each ray is sampled from every pixel, they are
not likely viable solutions for real-time or on-device rendering
tasks. To alleviate the problem, state-of-the-art algorithms focus
on reducing the size of compute-intensive MLPs without losing the
quality of rendered images. The parametric encoding is one promis-
ing way to achieve this, which effectively reduces the amount of
computation while maintaining or even increasing the image qual-
ity over the original NeRF-based models. In the following section,
we further investigate the state-of-the-art neural representation
that employs trainable input encoding parameters (i.e., feature vec-
tors) [37], which is our target for acceleration.

3 MOTIVATION
In this section, we first explain the parametric encodings and the
neural rendering pipeline used in Instant-NGP (Sections 3.1 and 3.2).
3The peak signal-to-noise ratio (PSNR) is one of the standard metrics to measure model
quality. Higher is better.
4We run the experiments on Titan RTX due to the large memory requirement of NSVF.

Table 2: Parameters for multi-resolution hash encodings (default).

Parameter Symbol Value

Num. of resolution levels (num. of hash tables) 𝐿 16
Num. of entries per level (hash table size) 𝑇 219
Feature dimensions per entry 𝐹 2
Each feature size 2 bytes

3) Interpolation
& Concatenation

…
Bounding Box (Scene)

7

4
5
6

0
1
2
3

8
9
10

Res. 𝐿 − 1

Res. 0 (Base res.)

7

4
5
6

0
1
2
3

	𝐹

8
9
10

𝐹𝐿…

Encoded
Feature

1) Hashing of Neighbor
Vertices

2) Hash Table Lookup

		𝒇

		𝒇

Figure 4: Multi-resolution hash encodings.

We then identify the key operations that contribute to the over-
all rendering time (Section 3.3) and discuss our observations and
bottlenecks of the execution flow on GPUs (Section 3.4).

3.1 Multi-resolution Hash Encoding
Instant-NGP [37] introduces a new primitive calledmulti-resolution
hash encoding. Figure 4 shows how a hash table-based input en-
coding maps the input positions to the encoded feature. First, for
a sample point s, we find the voxel that surrounds the point and
obtain an 𝐹 -dimensional feature vector for each vertex of the voxel
by indexing into the hash table. The hash index is computed using
the hash function in Equation 2. Each of xv, yv, zv corresponds to
the vertex coordinate of the voxel grid. P1 and P2 are unique, large
prime numbers, and ⊕ is the bit-wise XOR operator.

h(xv, yv, zv) = (xv · 1) ⊕ (yv · P1) ⊕ (zv · P2) mod T (2)

We then perform linear interpolation of the eight 𝐹 -dimensional
feature vectors to obtain an 𝐹 -dimensional feature vector for the
sample input point at resolution level 𝐿. We repeat these steps 𝐿
times, each with a different grid resolution (i.e., a different hash
table), and concatenate the 𝐿 feature vectors from all levels, which
results in an 𝐹×𝐿-sized input vector for the MLP.

The multi-resolution hash encoding uses 𝐿 as the number of res-
olution levels. The base (i.e., coarsest) grid resolution is set to 16, so
there are 163 voxels in the base resolution (i.e., 𝐿=0). The resolution
is scaled by a constant factor for finer levels (e.g., 𝐿=1,2,3,...), thereby
increasing the total number of voxels in a cubic fashion. Each reso-
lution level is assigned to an independent hash table, each of which
has up to 𝑇 hash entries. Each entry contains an 𝐹 -dimensional
feature vector, so the total number of trainable parameters for the
multi-resolution hash encoding is 𝐿×𝑇×𝐹 . Table 2 shows the default
parameters for multi-resolution hash encodings in [37]. We use the
same values for our discussions in the following sections.

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Input Encoding
(Frequency Encoding)

Density MLP

Mat
Mul0

32 x 64

Mat
Mul1

64 x 16

Color MLP

Mat
Mul0

32 x 64

Mat
Mul1

64 x 64

Mat
Mul2

64 x 3

Output
RGB

𝑁!"#$%

…

Encoded
Features

32 16
Encoded
Direction
Vector

Output
Density
(1st Col)

16
Density

MLP
Output

Input Encoding
(Hash Encoding)

		𝐿&'

		𝐿&

		𝐿(

…

Encoding
Tables

		𝐹

	𝑇

Input
Coordinates

3 2

𝑁!"#$%

Pos. Dir.

3

Figure 5: The model architecture in [37]. All parameters are the default values used for NeRF in the original paper.

3.2 GPU Execution Flow
Figure 5 shows the high-level execution flow of the rendering
pipeline with the multi-resolution hash encoding. Initially, there are
Npoint input positions, and they go through 16 hash tables and pro-
duce an Npoint×32 input feature matrix. The density MLP takes as
input the feature matrix and produces an Npoint×16 matrix, which
is then concatenated with an Npoint×16 encoded direction matrix.
The resulting Npoint×32 matrix is fed into the color MLP to produce
3-D RGB values (i.e., ci) for each input position. The number of
input positions (Npoint) can be from hundreds of thousands to tens
of millions depending on the image resolution; for instance, an FHD
image has two million pixels. Note that we need to perform eight
encoding lookups per level for each input position, which leads to
a significant number of hash table lookups in total.

3.3 Latency Breakdown
Figure 6 decomposes the rendering time into five major opera-
tions: Hash Encoding (ENC), Feature Computation (MLP), Ray Com-
paction (Compaction),5 Empty Space Skipping (ESS), and Early Ray
Termination (ERT). For the experiments, we run Instant-NGP with
the large Fox dataset (1920×1080 FHD resolution) on a range of
GPUs including the edge device (Jetson Xavier NX).

0

200

400

600

800

RTX 2080 Titan RTX RTX 3070 Xavier NX

R
en

de
rin

g
Ti

m
e

(m
s)

16151.1

0

20

40

60

80

100

RTX 2080 Titan RTX RTX 3070 Xavier NX

Pe
rc

en
ta

ge
 (%

)

ENC MLP
Compaction ESS
ERT Others

(b) Time distribution(a) Total rendering time

Figure 6: Latency breakdown on GPUs (Instant-NGP/Fox dataset).

The results show that ENC and MLP are the major performance
bottlenecks among the operations. Note that Feature Computation
(MLP) takes less than half of the rendering time, which is quite
different from the original NeRF-based models where MLP com-
putation dominates the overall rendering time. At the same time,
Hash Encoding (ENC, which includes hash table lookups and some
5Ray compaction is the process to compact the rays into a dense data structure after
the ERT.

computation for interpolation) takes more than 40% of the render-
ing time. Note that this ENC operation does not fit well into the
contemporary DNN accelerators.

3.4 Observations and Inefficiencies
We further investigate the multi-resolution hash encoding primitive
and make the following key observations.
Observation I: Performance portability of multi-resolution
hash encodings. Although the time complexity of a hash table
lookup is 𝑂 (1), it is not a hardware-friendly operation. A well-
designed hash function outputs seemingly random hash indexes,
which lead to irregular accesses to the hash table. As previously
mentioned, the state-of-the-art neural representation model trains
16 (𝐿) hash tables (along with MLP weights), each of which is a
multi-megabyte in size (e.g., sixteen 2MB hash tables in [37]). As
such, they do not all fit in the on-chip memory of most of today’s
mobile or consumer GPUs/accelerators, thus the hash table access
can lead to frequent off-chip memory accesses if we naïvely per-
form the operation. Furthermore, each hash entry access only takes
four bytes (𝐹=2) out of 64 bytes of data from the off-chip memory,
leading to a substantial waste of off-chip memory bandwidth.

For the high-end consumer GPUs where the on-chip memory
capacity is larger than a single hash table, one solution is to load
the hash table into the on-chip memory level by level and stream
through all sample points to obtain anNpoint×2 partial input feature
matrix for the corresponding level (𝐿) before moving onto another
(𝐿+1) to avoid the costly off-chip memory access (which is the
operation flow on GPUs); note that even in this case, the hash
encoding occupies more than 40% of the rendering time, as shown
in Figure 6. For the mobile and low-end/mid-range consumer GPUs,
however, the trained model does not efficiently run because even
a single hash table does not fit in the small on-chip cache, thereby
leading to frequent off-chip memory accesses.
Observation II: Serialized execution of rendering pipeline. As
previously discussed, two major operations that spend the most
of the rendering time are hash encodings (ENC) and feature com-
putation (MLP). In the execution flow with the multi-resolution
hash encoding, these two main operations are serialized in execu-
tion although they have different compute and memory require-
ments; ENC is memory bandwidth-intensive, whereas MLP is more
compute-intensive.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

(a) Level 1 (b) Level 13

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

Av
g.

 #
 A

cc
es

se
s

0

2000

4000

6000

8000

10000

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

Av
g.

 #
 A

cc
es

se
s

Figure 7: Average number of accesses to hash entry groups. For clar-
ity, hash entries are sequentially grouped as the number of bins (bin
size: 𝐿1=112, 𝐿13=4096) starting from entry 0 (Fox/Iteration 0).

Input
Encoding MLP

Features

Feat0
Feat1

Ray Samples

	(𝑥!, 𝑦!, 𝑧!, 𝜃!, 𝜙!)

	(𝑥", 𝑦", 𝑧", 𝜃", 𝜙")

RGBa

Batch0

Input
Encoding MLP

Features

Feat2
Feat3

Ray Samples

	(𝑥#, 𝑦#, 𝑧#, 𝜃#, 𝜙#)

	(𝑥$, 𝑦$, 𝑧$, 𝜃$, 𝜙$)

RGBa

Batch1

Time
Figure 8: Execution pipeline in NeuRex.

Note that because the Npoint×32 input feature matrix is con-
structed level by level (i.e., column-wise), we cannot perform MLP
computation for the rest of the pipeline until we finish hash table
lookups for the finest level (𝐿=15). Ideally, if we overlap the execu-
tion of ENC and MLP in parallel, we can speed up the rendering
pipeline. NeuRex enables overlapping the executions of these two
operations and also better utilizes hardware resources by making
changes in the execution flow with algorithmic optimizations and
supporting hardware.
Observation III: Difference in access characteristics across dif-
ferent levels of hash tables. Figure 7 shows the distribution of
hash entry accesses for the coarse level (𝐿=1) and fine level (𝐿=13)
tables. For the resolution levels at which a hash collision does not
occur (e.g., 𝐿=1), a hash table entry is solely assigned to a single
vertex point of the voxel grid. Also, there is a large number of
sample positions in a voxel, which share the same vertex points.
Consequently, the accesses are somewhat localized to a few entries,
and the number of accesses for each entry is high. On the other
hand, for finer resolution levels (e.g., 𝐿=13), the accesses are more
evenly (and randomly) distributed across the hash entries, while
the number of accesses for each entry is quite low. Based on this
observation, NeuRex features two different types of specialized on-
chip memories to effectively serve the encoding lookups of coarser
and finer levels.

4 NEUREX: NEURAL GRAPHICS ENGINE
In this section, we present NeuRex, a neural graphics engine that
leverages the insights from Section 3 to efficiently perform neural
graphics computation.

4.1 Execution Flow in NeuRex
Figure 8 shows the high-level execution flow of the neural render-
ing pipeline in NeuRex. The main difference between the NeuRex
execution flow and the original one is the pipelining and overlapping
of the hash encoding (ENC) and MLP operations. For example, as
previously discussed, these two main operations are serialized in

Subgrid 1

Subgrid 6

Hash Table

Subtable 1

Subtable 6

Subtable 0

Subtable 2

Subtable7

Subtable 5
H
ashing

H
ashing

…

Figure 9: Restricted hashing.

the original flow that both ENC and MLP contribute to the crit-
ical path latency. However, NeuRex breaks the serialization and
executes them in parallel by processing the input positions at the
granularity of a set of positions, which we refer to as a batch. For
instance, we first load a batch of input positions (𝐵) and perform
multi-resolution hash encodings for the batch. We process the batch
level by level to exploit the locality of hash entries within a batch.
Once the ENC is done, we obtain a 𝐵 × 32 partial input feature
matrix, which we can feed into the MLP. Then, while the previous
batch goes through the FC layers, we fetch a new batch and perform
the ENC operation. By doing so, NeuRex better utilizes the compute
units and memory bandwidth.

4.2 Restricted Hashing
We propose a hardware-friendly multi-resolution hash encoding,
which effectively enables the NeuRex execution flow. The key idea
of our enhancement is to partition the input coordinate grid into
several subgrids, each of which owns a portion of a large hash table
for each level. We then arrange the processing of input points in a
way that we finish processing a subgrid for all resolutions before
processing another. In this way, we effectively restrict the hash table
access for the vertex feature lookups to a range of consecutive hash
entries, rather than being randomly distributed across the table.

This provides us with two key benefits. First, it allows the ac-
celeration devices with small on-chip memories (e.g., mobile/edge
devices or low-end GPUs) to avoid the costly off-chip memory
accesses and perform encoding lookups more efficiently by load-
ing only a portion of the hash table into the on-chip memory at a
time, thus enabling performance portability of multi-resolution hash
encodings across a range of compute platforms. Second, it offers
opportunities for a batch of inputs within a subgrid to efficiently
perform hash encodings in parallel with the MLP computation of
another batch.

Figure 9 shows the restricted hashing mechanism, in which we
arrange the input positions that belong to the same subgrid to
be clustered in a set of batches. By doing so, the region of the
hash table accessed from the same batch is restricted to a small
subset of the table, which we refer to as a subtable. In the figure,
for example, the sample positions in Subgrid 6 only access the hash
entries in Subtable 6, while being indexed by a new hash function.
When we divide the 3D scene (i.e., 3D grid) into 𝑅 subdivisions for
each dimension, the number of subgrids becomes 𝑅3, and the hash
table is also equally divided into 𝑅3 subtables. We refer to 𝑅 as the
subgrid resolution (sugbrid_res). Then, for each input position (p),

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Position
Buffer

Request
Buffer

Index Generation
Unit…

Grid Cache Subgrid Buffer

Interpolation
Compute Unit

…Encoding
Engine

Input
Buffer

Systolic
Array

…

…

……
…

…

Output Buffer

Weight Buffer

Act.

TCE

O
ff-
C
hi
p
M
em
or
y

Encoding Lookup Unit

Figure 10: Overview of NeuRex architecture.

we can compute to which subgrid (subgrid_id) the input belongs
using Equation 3.

subgrid_id =

2∑
k=0

⌊pk · subgrid_res⌋ · subgrid_resk, (3)

where p = (p0, p1, p2) = (x, y, z) and x, y, z ∈ [0, 1).
By using the subgrid index for a batch, we load the correspond-

ing subtable onto the on-chip buffer. This allows us to perform
encoding lookups solely from the on-chip memory without any fur-
ther access to the off-chip memory. Note that the new hash index
used for accessing the entries in the subtable can be computed us-
ing Equation 2 with a minor modification for the modulo operation
(i.e., using the subtable size instead of the table size).

4.3 Architecture Overview
Figure 10 shows the overview of our accelerator design, which
consists of two main modules: Encoding Engine (EE) and Tensor
Compute Engine (TCE). The TCE module is similar to the con-
ventional DNN accelerators that employ a TPU [24]-like systolic
array with memory buffers for data movement. NeuRex minimally
extends the existing DNN accelerator design with a dedicated hard-
ware module (EE) that efficiently performs multi-resolution hash
encodings.

At a high level, the encoding engine is responsible for performing
hash table lookups and interpolating the feature vectors obtained
from the lookups to produce an input feature vector. To do so, a
batch of input positions is first streamed into the position buffer from
the off-chip memory. The positions in each batch are processed for
all 𝐿 levels of encoding lookups before we process the next batch.

The Index Generation Unit (IGU) in the EE generates the hash
indexes and interpolation weights of the neighbor vertices for each
input position. With the hash indexes, the Encoding Lookup Unit
(ELU) fetches the encoded vertex features from the on-chip buffers
(Grid Cache or Subgrid Buffer). After that, the final input feature

𝑥

𝑦

𝑧

Base Coordinate:
(3, 4, 2)

(4, 4, 2)

(4, 5, 2)

(4, 5, 3)
(3, 5, 3)

(3, 4, 3)

(4, 4, 3)

(3, 5, 2)

𝑥

𝑦

𝑧

(b) Interpolation weights(a) Vertex coordinates

Figure 11: The process of trilinear interpolation.

vector is computed by the Interpolation Compute Unit (ICU) and is
sent to the input buffer of the TCE. The TCE performs MLP using
the systolic array. Because the weights are small in size and are
heavily reused, we choose a TPU-likeweight stationary dataflow for
the systolic array. In the following, we describe the key hardware
components of the encoding engine in detail.

4.4 Index Generation Unit
The Index Generation Unit (IGU) consists of 𝑁 compute units (64/8
units in our NeuRex-Server/NeuRex-Edge designs) that perform
computation in parallel. The IGU is composed of three main parts:
position scaling, hash index computation, and interpolation weight
computation.

The IGU first scales up the input coordinate because it is in the
bounding box in which it is normalized to the coordinate between 0
and 1. Based on the resolution level, which corresponds to a specific
resolution, we scale up the input to the coordinate system of the
target level. This can be done by simple floating-point multiply-
and-add operations. After scaling, we obtain two useful pieces
of information. The integer part of the coordinate indicates the
grid index, and the fractional part indicates the relative position of
the point within its voxel. The grid index is used for locating the
neighbor vertices of the voxel for hashing, and the relative position
is used for computing interpolation weights for the vertices.

Given the grid index, which corresponds to the base coordinate of
the voxel, the IGU computes all the coordinates of neighbor vertices
by adding one or zero to each coordinate value. Figure 11(a) shows
how to obtain the coordinates of seven neighbor vertices when the
base coordinate is (3, 4, 2). These coordinates (including the base)
are the inputs of the hash function in Equation 2. Each Hash Index
Compute Unit in the IGU is responsible for computing the hash
indexes of the vertices in parallel. In our design, the compute units
are fully pipelined, and the IGU produces 𝑁 × 8 hash indexes per
cycle.

To aggregate the features of the vertices, we need to compute an
interpolation weight for each vertex. The weight is determined by
the distance from the input position to each vertex of the voxel, as
shown in Figure 11(b). Note that a larger weight is assigned to the
vertex that is closer to the sample position, which implies that the
feature vector of the vertex is more representative of the position.
Equation 4 shows how to compute the interpolation weight. The
Interpolation Weight Compute Unit in the IGU performs this opera-
tion with multipliers and subtractors, and the IGU also produces
𝑁 × 8 weights per cycle. Note that the hash index and interpolation
weight compute units are not shown in Figure 10 for brevity.

winterp = (1 − |xs − xv |) · (1 − |ys − yv |) · (1 − |zs − zv |), (4)

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

Valid
…

18-bit MSBs of 𝑔𝑖𝑑 4-bit 𝑙𝑒𝑣𝑒𝑙	𝐼𝐷 3-bit filled counter

GC Tag Bank

26 bits total for GC tag entry

tag 1

tag 0

tag 𝐾-1

…

entry 0 entry 1 entry 2 entry 7…

GC Data Bank (8×4B hash table entries)

entry 0 entry 1 entry 2 entry 7…

entry 0 entry 1 entry 2 entry 7…

…

Figure 12: Grid cache (GC) structure.

where (xv, yv, zv) and (xs, ys, zs) are the vertex and scaled position
coordinates, respectively.

4.5 Encoding Lookup Unit
The Encoding Lookup Unit (ELU) is responsible for performing
hash table lookups of the vertex points. Note that for a sample input
point, we fetch 8×𝐿 hash table entries. As we discuss in Section 3.4,
we observe that the access characteristics of hash tables are different
across the resolution levels. We can divide the resolution levels into
two categories: coarse and fine levels. For coarse levels, the accesses
show high locality to a relatively small number of hash entries. In
contrast, the accesses to the finer levels are evenly distributed across
the entries in the hash table. Based on the observation, we deal
with two types of hash table lookups in different ways. We use a
grid cache for coarse levels and a subgrid buffer for fine levels.
Grid Cache. For coarse resolution levels (e.g., 𝐿=0,1,2,...), the num-
ber of input positions that are included in the same voxel is large
enough. At the same time, the granularity of hash table access for
an input position is not a single hash entry but is a set of entries for
eight vertices of the voxel. We exploit the observation by coalescing
the eight entries into a single data block with additional information
about the voxel grid; i.e., level index (lid) and grid index (gid). Then,
for an input position, we fetch the coalesced eight vertex features
using its gid with a single access.

Figure 12 shows the grid cache (GC) structure. The GC consists of
heavily-banked SRAMs, eachwith an independent address decoding
logic, in order to sustain high on-chip memory bandwidth. Each
data block in the GC contains the feature vectors of eight vertices
for a voxel (8×4B=32B). The gid computed by the IGU is used to
index into the GC. The tag contains four fields: a 1-bit valid, 18-bit
msbs of gid, a 4-bit level index lid, and a 3-bit counter. The GC is
a direct-mapped cache style buffer, and the lsbs of gid are used to
index the bank and data block.

Note that if the GC does not contain the vertex features for a gid
request, it sends the memory requests for eight vertex entries to off-
chip memory while recording the request addresses andmetadata in
the request buffer. When the data is returned from off-chip memory
one by one, we find the matching address in the request buffer and
fill the data block entry while incrementing the counter. Note that
it generates multiple 64B requests, and we only take 4B out of 64B
for each returned data. The data block becomes only valid once all
the eight entries are filled from the off-chip memory.
Subgrid Buffer. For finer levels (e.g., 𝐿=...,13,14,15), we load each
partitioned hash table into the subgrid buffer for encoding lookups.

Note that the subgrid buffer contains all the hash entries required
to process the input positions for a resolution level in a subgrid;
thus, there is no further off-chip memory access until we move on
to another level unlike the GC. As in the grid cache, the subgrid
buffer is also heavily-banked to sustain high memory bandwidth
(32 banks in our implementation). Unlike the grid cache, however,
each bank of the subgrid buffer provides a single hash entry (i.e., 4
bytes) for a lookup. So, a bank conflict occurs when any of the eight
vertex lookups falls onto the same bank. For 32 banks, however, we
empirically find that the overall rendering time does not noticeably
increase as the hash encoding operation is overlapped with MLP
computation in NeuRex. We use the subgrid buffer from Level 8
for our evaluation as it shows the best overall rendering time. Note
that NeuRex supports an arbitrary value if needed.

4.6 Interpolation Compute Unit
Once the encoding lookups are finished, we aggregate the vertex
features from the lookups with the corresponding weights. The
Interpolation Compute Unit (ICU) performs this operation in four
stages. In the first stage, the eight features are multiplied by the
corresponding weights. The other three stages are consumed by
an adder tree. The ICU has 64/8 fully pipelined compute units (in
NeuRex-Server and NeuRex-Edge, respectively), and it sends the
aggregated feature vectors to the input buffer in the TCE.

4.7 Tensor Compute Engine
The MLP in neural rendering comprises only a few small FC layers.
The number of sampled inputs, on the other hand, is orders of
magnitude larger than the width of FC layers. Small MLP weights
and a large input dimension lead to a huge opportunity for layer
fusion, as observed in other work [3]. We also adopt fusion-based
MLP computation for our accelerator design. Given a batch of input
features, the Tensor Compute Engine (TCE) works on a series of
FC and activation layers and generates the final outputs without
storing the intermediate features back to the off-chip memory. The
TCE has large enough input and output buffers to store them.

5 EXPERIMENTAL METHODOLOGY
Hardware Implementation.We implement the hardware compo-
nents of NeuRex in RTL using SystemVerilog. The functionality of
each component is verified via RTL simulations with synthetic data.
We synthesize the NeuRex components using a commercial 28nm
technology node with Synopsys Design Compiler [53]. On-chip
SRAMs are also generated from a commercial memory compiler
with the same technology. The position/subgrid buffers in the EE
and the input/output buffers in the TCE are double-buffered. The
subgrid buffer is sized at 128KB with 32 banks for the case where
the per-level table size becomes significantly larger in the future,
but it can be as small as 32KB for our evaluation. The grid cache is
sized at 64KB with 32 banks, and the request buffer can handle up
to 64 addresses and 64 merged requests per address. We design our
architecture to run at a 1GHz clock frequency for most components
except for the on-chip memory that runs double-pumped at 2GHz
to provide high on-chip memory bandwidth, as similar to [50].

To evaluate the system-level performance of NeuRex with off-
chipmemory, we also implement a cycle-level simulator that models

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 3: Evaluated workloads.

Task Dataset Scene (Resolution) Type

NeRF

Synthetic-NeRF [35] Mic (800×800) Synthetic

Synthetic-NSVF [30] Palace (800×800) Synthetic

BlendedMVS [57] Fountain (768×576) Real world

Tanks&Temples [27] Family (1920×1080) Real world

Instant-NGP [37] Fox (1080×1920) Real world

Neural SDF The Stanford Models [1] Bunny (1920×1920) -

Armadillo (1920×1920) -

Image Approximation - Tokyo (6144×2324) -

Albert (3250×4333) -

the NeuRex architecture with Ramulator [26] for DRAM timing.
We collect position traces by running the workloads on GPUs and
use them as input for the simulator. The timing parameters of the
simulator are determined based on the RTL synthesis results. We
measure the accelerator performance using the cycles reported by
the simulator. The simulator also outputs the number of SRAM
accesses, which we use to obtain the energy numbers of on-chip
buffers. The energy numbers of the off-chip memory are computed
using the DRAM statistics from the memory simulator [26].

We evaluate two variants of NeuRex: NeuRex-Edge and NeuRex-
Server. NeuRex-Edge is a design point when there are strict area
and power constraints, which is a typical case for mobile and edge
computing platforms. NeuRex-Server is a scaled-up architecture
for high-end computing platforms. The batch size is set to 1024
and 8192 for NeuRex-Edge and NeuRex-Server. We configure the
off-chip memory of NeuRex-Edge as LPDDR4-3200 [4] and ana-
lyze the statistics using DRAMPower [9, 34]. HBM2 [5] is used for
NeuRex-Server with the energy model from FGDRAM [44]. We use
a multiple of a 32 × 32 systolic array instead of using a larger one;
this improves the utilization of the compute units. The TCE consists
of one and sixteen 32 × 32 systolic arrays for the NeuRex-Edge and
NeuRex-Server, respectively. Section 6.5 discusses the hardware
configurations and energy efficiency of two variants of NeuRex.
Baselines. We compare our accelerator designs with two different
classes of computing platforms. We choose NVIDIA Jetson Xavier
NX [42] as a representative of edge devices. Also, RTX 3070 [43] is
selected as high-end consumer-level rendering acceleration hard-
ware. We use and modify the author-released code that includes
heavily-optimized CUDA kernels (e.g., fused MLP and other opti-
mizations for better tensor core utilization). We measure the perfor-
mance and power consumption of each GPU by using the built-in
hardware counters. Note that RTX 3070 is fabricated using the Sam-
sung 8nm process node, which is a couple of generations advanced
compared to the technology node used for NeuRex (28nm).
Workloads. Table 3 shows the workloads that we use to evaluate
our design. We carefully select a range of synthetic and real-world
datasets from several prior works to cover the scenes with varying
resolutions and complexity. The number of initial rays is propor-
tional to the resolution of a rendering image, while the number of
ray sampling iterations depends on how realistic the scene is. In
addition to NeRF, we also evaluate our design with other graphics
tasks, such as neural signed distance functions (SDF) and 2D image
approximation, to demonstrate the general applicability of the para-
metric encoding-based neural scene representations in Section 6.6.

0

1

2

3

4

Mic Palace Fountain Family Fox

Sp
ee
du
p

0

2

4

6

8

10

12

Mic Palace Fountain Family Fox

Sp
ee
du
p

(b) NeuRex-Edge(a) NeuRex-Server

Figure 13: Speedup of NeuRex over GPUs.

0

2

4

6

8

Mic Palace Fountain Family Fox

Sp
ee
du
p

NeuRex-Server NeuRex-Edge
0

1

2

3

4

Mic Palace Fountain Family Fox

Sp
ee
du
p

NeuRex-Server NeuRex-Edge

(b) MLP(a) ENC

Figure 14: Speedup on hash encodings (ENC) and feature computa-
tion (MLP).

6 EVALUATION
6.1 NeuRex Performance
Figure 13 shows the performance of NeuRex over RTX 3070 and
Xavier NX. On average, NeuRex-Server and NeuRex-Edge achieve
2.88× and 9.17× speedups over the baseline GPUs. It is worth noting
that NeuRex-Edge exhibits a higher speedup over the baseline than
NeuRex-Server. This is because irregular accesses to large encoding
tables quickly become a performance bottleneck in the GPU execu-
tion when the GPU has a small on-chip memory capacity (e.g., a
256KB L2 cache in Xavier NX). By employing restricted hashing and
loading a portion of the encoding table at a time, NeuRex enhances
the performance portability of the multi-resolution hash encoding.6

Figure 14 compares the performance of NeuRex and GPUs for
two key operations in modern neural renderings: hash encodings
(ENC) and feature computation (MLP). Note that the speedup shown
in Figure 14(a) comes from the restricted hashing algorithm and spe-
cialized on-chip memory design. Figure 14(b) shows that NeuRex
performs MLP computation faster despite the lower peak compute
throughput compared to the GPUs. This is because the GPU ten-
sor cores are underutilized due to small FC layers, whereas the
TCE in NeuRex achieves higher compute utilization. Also, the over-
all speedup of NeuRex (Figure 13) is higher than the individual
speedups for ENC and MLP because these two operations are seri-
alized in the original execution flow, whereas NeuRex enables them
to be overlapped thanks to the restricted hashing.

6.2 Rendering Quality
Restricted hashing slightly modifies the multi-resolution hash en-
coding to make it hardware-friendly. To demonstrate that our pro-
posed scheme does not degrade the quality of rendered images, we
compare the average PSNR between the original hash encoding
primitive (Org-Hash) and the restricted one (Ours). For each scene,
we obtain PSNRs from 10 different camera views and average them
to generalize the result.
6We use 64 subgrids for restricted hashing in our evaluation.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

0

10

20

30

40

Mic Palace Fountain Family Fox

PS
N

R
 (d

B)

Org-Hash Ours-DT Ours-LT

Figure 15: Rendering quality (PSNR) of the original hash encoding
(Org-Hash) and restricted hashing (Ours).

Ours-LT (PSNR: 37.70)Org-Hash (PSNR: 38.18) Ours-DT (PSNR: 36.53)Reference

Figure 16: Rendered images. Models are trained for 31K iterations.

Figure 15 shows that there is a negligible PSNR drop (0.7%∼3.9%)
over the baseline when restricted hashing is applied to the default
table size in [37] (Ours-DT; 2MB per level). Note that Ours-DT is
already superior to the original NeRF-based models that do not
use hash encodings. As discussed in Section 4, restricted hashing
limits each batch to accessing input encodings only within a single
subgrid buffer. Consequently, increasing the hash table size has less
impact on performance as only a portion of the table needs to be
loaded on-chip at a time. Based on this observation, we configure
our model with a 4× larger hash table (Ours-LT; 8MB per level) to
further improve PSNRs without compromising performance. The
results show that Ours-LT leads to only a minor 1.1% decrease
in PSNR for the worst case, and for several other scenes, it even
produces higher PSNRs than Org-Hash.

Figure 16 compares the reference image to the rendered ones us-
ing the original primitive (Org-Hash) and restricted hashing (Ours)
for the scene that exhibits the highest PSNR drop. We see that Ours-
DT/LT does not degrade the rendering quality, and interestingly,
in some parts, the images produced using restricted hashing look
closer to the reference image than Org-Hash even though the PSNRs
are lower. This could be because some parts experience fewer hash
collisions than the case with a single hash table in Org-Hash. Note
that the off-chip memory is large enough to accommodate the in-
creased hash tables, which makes restricted hashing an attractive
solution for edge and mobile platforms.

6.3 Source of Performance Gain
Figure 17 shows the speedup from each component in NeuRex. We
can divide NeuRex into two key components: grid cache (GC) and
restricted hashing (RH) with the subgrid buffer. By accumulating
each optimization from the baseline, we evaluate three variants of
NeuRex: Baseline, GC, and GC+RH. The baseline is the batch-based
execution model with no optimization. Note that GC and RH are
exclusively used for encoding lookups of the coarse and fine levels,
respectively. The level threshold is set to eight. Meanwhile, for the
variants that do not employ the GC or RH, we use a 2MB cache,

0

1

2

3

4

5

Mic Palace Fountain Family Fox

Sp
ee

du
p

Baseline GC GC + RH

Figure 17: Source of gain. Speedup of variants isolating each opti-
mization in NeuRex.

1.0

1.5

2.0

2.5

3.0

3.5

16KB 32KB 64KB 128KB 256KB

Sp
ee
du
p

1.0

1.5

2.0

2.5

3.0

3.5

2048 4096 8192 16384 32768

Sp
ee
du
p

(b) Grid cache size(a) Batch size

Figure 18: Speedup across the batch and grid cache sizes.

which is the size of a single hash table, to model a conventional
cache in GPU. All the configurations are adopted for NeuRex-Server.

The speedup of GC over the baseline comes from utilizing the
on-chip memory bandwidth more effectively than the conventional
cache for coarse levels. In the baseline, we need to access the cache
eight times to obtain all the vertex features for a single sample
point. Also, each access only takes 4B out of a 64B cacheline, which
leads to a waste of on-chip bandwidth. In contrast, the grid cache
provides the coalesced eight vertex features in a single access, thus
effectively serving the hash encoding lookups with a small cache
capacity for coarse levels. By maximizing the hash entry reuse in
the subgrid buffer for fine levels, NeuRex (GC+RH) further improves
performance over the baseline with GC.

6.4 Sensitivity Study
This section evaluates how NeuRex performance varies with differ-
ent hardware resource configurations. In particular, we focus on
two configurations: batch size and grid cache size. Figure 18 shows
the speedup over the GPU across the batch and grid cache sizes.
We show the results of NeuRex-Server only with the Fox dataset as
the general trend holds.
Batch Size. The batch size affects the performance because a larger
batch can increase the temporal locality of the grid cache and im-
prove the compute utilization of TCE. However, a larger batch leads
to an increase in the size of some on-chip buffers, such as the po-
sition buffer. We increase the batch size from 2048 to 32768 and
observe that the speedup does not noticeably increase after a size of
8192. This is because the streaming latency from off-chip memory
to fill the double-buffered subgrid buffer is mostly hidden by the on-
chip memory access latency from encoding lookups for fine levels.
We choose a batch size of 8192 and 1024 to balance the performance
and area overhead for NeuRex-Server and NeuRex-Edge.
Grid Cache Size.We observe that a small grid cache is sufficient
to achieve the full benefit of the grid cache. We perform a sweep
of grid cache sizes from 16KB to 256KB and see that the speedup
noticeably increases until 64KB but not much for larger caches. The
grid cache size is closely related to the number of unique voxels in
coarse levels because each cacheline has the eight vertex features
of a voxel. Since most input batches belong to less than 2048 unique

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 4: Area and power of NeuRex (NeuRex-Server / NeuRex-Edge).

Component Remarks Area [mm2] Power [W]

Systolic Array 16×(32×32) / 1×(32×32) 7.68 / 0.48 3.04 / 0.19
Weight Buffer 20KB / 20KB 0.04 / 0.04 0.02 / 0.02
Input Buffer 2×1MB / 2×128KB 3.39 / 0.57 0.36 / 0.26
Output Buffer 2×1MB / 2×128KB 3.39 / 0.57 0.36 / 0.26
Total TCE 14.50 / 1.66 3.78 / 0.73

Position Buffer 2×96KB / 2×12KB 0.43 / 0.05 0.20 / 0.02
Grid Cache 64KB / 64KB 0.14 / 0.14 0.06 / 0.06
Subgrid Buffer 2×128KB / 2×128KB 0.57 / 0.57 0.26 / 0.26
Request Buffer 16KB / 8KB 0.03 / 0.01 0.08 / 0.04
Index Generation Unit 64 units / 8 units 4.80 / 0.60 1.34 / 0.16
Interpolation Compute Unit 64 units / 8 units 0.90 / 0.11 0.38 / 0.05
Total EE 6.87 / 1.48 2.32 / 0.58

Total 21.37 / 3.14 6.10 / 1.31

0

5

10

15

20

25

Mic Palace Fountain Family Fox

En
er

gy
 E

ffi
ci

en
cy

0

5

10

15

20

25

Mic Palace Fountain Family Fox

En
er

gy
 E

ffi
ci

en
cy

(b) NeuRex-Edge(a) NeuRex-Server

Figure 19: Energy efficiency of NeuRex over GPUs.

voxels in coarse levels, we can cover most of the voxels with a small
grid cache. We use a 64KB grid cache in our design.

6.5 Area and Energy Efficiency
Table 4 shows the area and power numbers of NeuRex, which
indicate that NeuRex can be implemented with small areas and
powers. Note that we implement a TPU-like TCE, but one can
choose other designs. For the encoding engine, which is the key
component in NeuRex, the largest area overhead is the IGU as it
consists of multiple FP and integer MAC units. However, the areas
of NeuRex-Server and NeuRex-Edge are both negligible compared
to the baseline GPU SoCs (i.e., 392mm2 for RTX 3070 and 350mm2

for Xavier NX).
Figure 19 shows the energy comparisons between NeuRex and

GPUs in which NeuRex shows significantly higher energy efficiency
than RTX 3070 and Xavier NX. Note that NeuRex uses a 28nm tech-
nology node, whereas the GPUs are fabricated with more advanced
nodes (8nm/12nm for RTX 3070/Xavier NX). Therefore, instead of
directly comparing the numbers, it is more appropriate to infer that
NeuRex would become even more attractive if it were fabricated
with more advanced technology.

6.6 Discussion
Restricted Hashing and Pipelining on GPUs. While restricted
hashing (RH) and software pipelining (PP) can be applied to GPUs,
we observe that the GPUs do not benefit much from these. In Fig-
ure 20, RH shows the case where we solely apply restricted hashing
to the GPUs. For Xavier NX, restricted hashing helps reduce off-
chip memory accesses as we only load a portion of the hash table
for a subgrid to process on-chip. However, we now feed multiple
smaller input matrices into the MLP, instead of a single large one,
for feature computation of all sampled points. This effectively in-
creases the total execution time of feature computation due to lower

0.0

0.5

1.0

1.5

Mic Palace Fountain Family Fox

Sp
ee
du
p

Baseline RH RH+PP

0.0

0.5

1.0

1.5

Mic Palace Fountain Family Fox

Sp
ee
du
p

Baseline RH RH+PP

(b) Xavier NX(a) RTX 3070

Figure 20: Restricted hashing and pipelining on GPUs.

(b) NeuRex-Edge(a) NeuRex-Server

0.0

0.5

1.0

1.5

2.0

Bunny Armadillo Tokyo Albert

SDF Gigapixel

Sp
ee
du
p

0

1

2

3

4

Bunny Armadillo Tokyo Albert

SDF Gigapixel

Sp
ee
du
p

27.96 28.60

Figure 21: Speedup on other graphics tasks beyond NeRF.

core utilization for each MLP. Overall, restricted hashing improves
performance, but the increase is limited. RTX 3070 already has
a large L2 cache, so restricted hashing does not help reduce off-
chip memory accesses. Furthermore, due to the same reason for
the edge GPU, the core utilization becomes lower than the case
without restricted hashing. Thus, restricted hashing in fact reduces
performance for most of the scenes except for the Fox dataset.

RH+PP refers to the case where we also apply software pipelin-
ing on top of restricted hashing. Although CUDA now supports
concurrent kernel execution, we have observed that it is challenging
to nicely overlap the execution of complex and optimized kernels,
as also noted in prior work [60], unlike the case of overlapping the
kernel execution with data transfers (e.g., cudaMemcpyAsync). This
is because hardware resources (e.g., registers, shared memory) are
limited, and the CUDA runtime does not effectively schedule thread
blocks from multiple complex kernels; users have limited control
over it. We observe that only small portions of execution between
the hash encoding andMLP kernels can be overlapped. On the other
hand, the overheads to enable overlapping (e.g., synchronization)
are higher, so RH+PP even decreases the performance compared to
RH. We also observe that the overlapped portion can be increased
by reducing the resource usage of each kernel, but this leads to an
increase in execution time for each kernel.
Long-Term Viability of NeuRex. As discussed in Section 2.3,
Instant-NGP does not significantly alter the NeRF model architec-
ture but introduces a simple change in the way the input positions
are encoded by employing several learnable hash tables. This in-
put encoding approach bears some resemblance to the positional
encoding and word embedding used in Transformer-based mod-
els [7, 14, 56], which have now become essential elements in natural
language processing (NLP). Similarly, the hash encoding primitive
can be applied to other graphics workloads or tasks, such as neu-
ral signed distance functions (SDF) [46] and image approximation
(Gigapixel). Figure 21 shows that NeuRex also helps improve perfor-
mance for SDF and image approximation over GPUs. We envision
that this new input encoding technique will be widely adopted in
the future whenever applicable, and NeuRex can help improve the
performance of these workloads beyond NeRF.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

7 RELATEDWORK
Deep Learning for Graphics. Graphics applications are widely
adopting deep learning approaches to improve their quality. One
of the recent works, NeRF [35], demonstrated promising results for
volume renderings through a neural network that comprises a posi-
tional encoding and a large MLP. Subsequent studies [6, 30, 48, 58]
improve on the NeRF work by focusing on the MLP. Although these
works improve the training/rendering time or rendering quality,
Instant-NGP [37] substantially outperforms other works by exploit-
ing the idea of multi-resolution hash encodings. NeuRex focuses
on the parametric encoding-based models that are captivating.
Domain-Specific Acceleration. Both hardware and software op-
timization techniques have been developed for the traditional ray
tracing-based rendering pipeline [8, 49]. Commercial GPUs now
feature acceleration modules [8] to speed up the tree traversal in
ray tracing, and some recent work improves the ray tracing perfor-
mance on GPUs with architectural support [29, 31]. In contrast, our
work focuses on the modern neural rendering pipeline, and NeuRex
is the first work that accelerates neural rendering models with para-
metric encodings. Hardware accelerators for DNNs have also been
extensively explored [3, 12, 13, 15, 16, 21, 24, 25, 28, 36, 40, 41, 47].
DNN models can be pruned with minimal accuracy loss, provid-
ing architects with an opportunity to skip unnecessary computa-
tion [20, 22]. Popular neural network primitives (e.g., ReLU) also in-
troduce zeros during computation. Sparse accelerators exploit these
opportunities to efficiently performDNN inference [2, 19, 21, 45, 59].
NeuRex can take advantage of some of the optimizations in these
works, but the existing DNN accelerators are unlikely to be used
for modern neural renderings out of the box.

8 CONCLUSION
Neural rendering gains significant traction as a promising method
for synthesizing complex scenes from novel viewpoints. This work
takes a careful look at the modern neural rendering model, which
significantly enhances rendering performance and quality over oth-
ers by employing multi-resolution hash encodings. We observe that
the hash encoding operation now becomes the performance bot-
tleneck in conventional hardware and needs to be more hardware-
friendly to achieve its full potential. Based on our analysis, we
present NeuRex, a specialized accelerator that features a novel hash
encoding engine for modern neural renderings. NeuRex exploits our
proposed restricted hashing to mitigate irregular access to off-chip
memory and enable concurrent execution of key operations in the
neural rendering pipeline. With the algorithm-hardware co-design,
NeuRex greatly improves rendering performance over conventional
hardware with substantially smaller area and power budgets.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This work was supported by the New Faculty Startup Fund from
Seoul National University and the Ministry of Science and ICT
under the ITRC support program (IITP-2023-RS-2022-00156295)
supervised by the IITP (Institute for Information&Communications
Technology Planning & Evaluation). The Institute of Engineering
Research at Seoul National University provided research facilities
for this work. Jaewoong Sim is the corresponding author.

REFERENCES
[1] 1994. The Stanford 3D Scanning Repository. https://graphics.stanford.edu/data/

3Dscanrep/
[2] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright

Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-Neuron-Free Deep
Neural Network Computing. In ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA).

[3] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-
Layer CNN Accelerators. In 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[4] JEDEC Solid State Technology Association. 2014. JEDEC Standard JESD209-4:
Low Power Double Data Rate 4 (LPDDR4). JEDEC, Virginia, USA.

[5] JEDEC Solid State Technology Association. 2015. JEDEC Standard JESD235A:
High Bandwidth Memory (HBM) DRAM. JEDEC, Virginia, USA.

[6] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Repre-
sentation for Anti-Aliasing Neural Radiance Fields. In IEEE/CVF International
Conference on Computer Vision (ICCV).

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models Are Few-Shot Learners. In
Conference on Neural Information Processing Systems (NeurIPS).

[8] John Burgess. 2020. RTX on—The NVIDIA Turing GPU. IEEE Micro (2020).
[9] Karthik Chandrasekar, Christian Weis, Yonghui Li, Sven Goossens, Matthias

Jung, Omar Naji, Benny Akesson, Norbert Wehn, and Kees Goossens. 2012.
DRAMPower: Open-source DRAM power & Energy Estimation Tool. http://www.
drampower.info

[10] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:
Tensorial Radiance Fields. In European Conference on Computer Vision (ECCV).

[11] Yinbo Chen, Sifei Liu, and Xiaolong Wang. 2021. Learning Continuous Image
Representation with Local Implicit Image Function. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[12] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao:
A Machine-Learning Supercomputer. In 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[13] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks. In ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA).

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT).

[15] Yu Feng, Boyuan Tian, Tiancheng Xu, Paul Whatmough, and Yuhao Zhu.
2020. Mesorasi: Architecture Support for Point Cloud Analytics via Delayed-
Aggregation. In 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO).

[16] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
2018. A Configurable Cloud-Scale DNN Processor for Real-Time AI. In ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA).

[17] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields Without Neural Net-
works. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

[18] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien
P. C. Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS. In
IEEE/CVF International Conference on Computer Vision (ICCV).

[19] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijaykumar.
2019. SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks.
In 52nd Annual IEEE/ACM International Symposium onMicroarchitecture (MIRCO).

[20] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun
Jung, and Jae W. Lee. 2021. ELSA: Hardware-Software Co-Design for Efficient,
Lightweight Self-Attention Mechanism in Neural Networks. In ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA).

[21] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA).

[22] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both
Weights and Connections for Efficient Neural Networks. In Conference on Neural

https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/
http://www.drampower.info
http://www.drampower.info

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Information Processing Systems (NeurIPS).
[23] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul

Debevec. 2021. Baking Neural Radiance Fields for Real-Time View Synthesis. In
IEEE/CVF International Conference on Computer Vision (ICCV).

[24] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-datacenter performance analysis of a
tensor processing unit. In ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA).

[25] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku
Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng
Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail
Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hemp-
stead, and Xuan Zhang. 2020. RecNMP: Accelerating Personalized Recommen-
dation with near-Memory Processing. In ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA).

[26] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Computer Architecture Letters (CAL) (2016).

[27] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and
Temples: Benchmarking Large-Scale Scene Reconstruction. ACM Transactions on
Graphics (SIGGRAPH) (2017).

[28] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM: A Practical
Near-Memory Processing Architecture for Embeddings and Tensor Operations
in Deep Learning. In 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO).

[29] Lufei Liu, Wesley Chang, Francois Demoullin, Yuan Hsi Chou, Mohammadreza
Saed, David Pankratz, Tyler Nowicki, and Tor M. Aamodt. 2021. Intersection Pre-
diction for Accelerated GPU Ray Tracing. In 54th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[30] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.
2020. Neural Sparse Voxel Fields. In Conference on Neural Information Processing
Systems (NeurIPS).

[31] Yashuai Lü, Libo Huang, Li Shen, and Zhiying Wang. 2017. Unleashing the
Power of GPU for Physically-Based Rendering via Dynamic Ray Shuffling. In
50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[32] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro,
and Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural
Scene Representation. ACM Transactions on Graphics (SIGGRAPH) (2021).

[33] Yiqun Mei, Yuchen Fan, and Yuqian Zhou. 2021. Image Super-Resolution With
Non-Local Sparse Attention. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

[34] Micron. 2016. Automotive LPDDR4/LPDDR4X SDRAM. Micron Technology, Inc,
Boise, USA.

[35] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Proceedings of the European Conference on Computer
Vision (ECCV).

[36] Duncan J.M Moss, Srivatsan Krishnan, Eriko Nurvitadhi, Piotr Ratuszniak, Chris
Johnson, Jaewoong Sim, Asit Mishra, Debbie Marr, Suchit Subhaschandra, and
Philip H.W. Leong. 2018. A Customizable Matrix Multiplication Framework
for the Intel HARPv2 Xeon+FPGA Platform: A Deep Learning Case Study. In
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA).

[37] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. In-
stant Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM
Transactions on Graphics (SIGGRAPH) (2022).

[38] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H. Mueller,
Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, and Markus Steinberger.
2021. DONeRF: Towards Real-Time Rendering of Compact Neural Radiance
Fields using Depth Oracle Networks. Computer Graphics Forum (EGSR) (2021).

[39] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. 2020.
Differentiable Volumetric Rendering: Learning Implicit 3D Representations with-
out 3D Supervision. In IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR).
[40] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh,

and Debbie Marr. 2016. Accelerating Binarized Neural Networks: Comparison of
FPGA, CPU, GPU, and ASIC. In International Conference on Field-Programmable
Technology (FPT).

[41] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang,
Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit
Subhaschandra, and Guy Boudoukh. 2017. Can FPGAs Beat GPUs in Acceler-
ating Next-Generation Deep Neural Networks?. In ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA).

[42] NVIDIA. 2018. NVIDIA Xavier System-on-Chip, HotChips 30.
[43] NVIDIA. 2020. GeForce RTX 3070 Family. Retrieved April 10, 2023 from https:

//www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
[44] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya

Agrawal, Stephen W. Keckler, and William J. Dally. 2017. Fine-Grained
DRAM: Energy-Efficient DRAM for Extreme Bandwidth Systems. In 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[45] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An accelerator for compressed-sparse convo-
lutional neural networks. In ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA).

[46] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for
Shape Representation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

[47] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network
Accelerators. In ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA).

[48] C. Reiser, S. Peng, Y. Liao, and A. Geiger. 2021. KiloNeRF: Speeding up Neural Ra-
diance Fields with Thousands of Tiny MLPs. In IEEE/CVF International Conference
on Computer Vision (ICCV).

[49] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. 2005. Multi-Level Ray
Tracing Algorithm. ACM Transactions on Graphics (SIGGRAPH) (2005).

[50] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A Fast and Pro-
grammable Accelerator for Fully Homomorphic Encryption. In 54th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[51] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein. 2019. Scene Rep-
resentation Networks: Continuous 3D-Structure-Aware Neural Scene Represen-
tations. In Conference on Neural Information Processing Systems (NeurIPS).

[52] Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct Voxel Grid Optimiza-
tion: Super-fast Convergence for Radiance Fields Reconstruction. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

[53] Synopsys. 2023. Design Compiler - Synopsys. Retrieved April 10, 2023
from https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/
dc-ultra.html

[54] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[55] Ayush Tewari, Justus Thies, BenMildenhall, Pratul Srinivasan, Edgar Tretschk, Yi-
fanWang, Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen
Lombardi, Tomas Simon, Christian Theobalt, Matthias Niessner, Jonathan T.
Barron, Gordon Wetzstein, Michael Zollhoefer, and Vladislav Golyanik. 2021.
Advances in Neural Rendering. https://doi.org/10.48550/ARXIV.2111.05849

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In Conference on Neural Information Processing Systems (NeurIPS).

[57] Y. Yao, Z. Luo, S. Li, J. Zhang, Y. Ren, L. Zhou, T. Fang, and L. Quan. 2020.
BlendedMVS: A Large-Scale Dataset for Generalized Multi-View Stereo Networks.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[58] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.
2021. PlenOctrees for Real-time Rendering of Neural Radiance Fields. In IEEE/CVF
International Conference on Computer Vision (ICCV).

[59] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator for sparse
neural networks. In 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO).

[60] Han Zhao, Weihao Cui, Quan Chen, Jieru Zhao, Jingwen Leng, and Minyi Guo.
2021. Exploiting Intra-SM Parallelism in GPUs via Persistent and Elastic Blocks.
In IEEE 39th International Conference on Computer Design (ICCD).

https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://doi.org/10.48550/ARXIV.2111.05849

	Abstract
	1 Introduction
	2 Background
	2.1 Neural Rendering
	2.2 Neural Radiance Fields (NeRF)
	2.3 NeRF Model Architectures
	2.4 Performance and Rendering Quality

	3 Motivation
	3.1 Multi-resolution Hash Encoding
	3.2 GPU Execution Flow
	3.3 Latency Breakdown
	3.4 Observations and Inefficiencies

	4 NeuRex: Neural Graphics Engine
	4.1 Execution Flow in NeuRex
	4.2 Restricted Hashing
	4.3 Architecture Overview
	4.4 Index Generation Unit
	4.5 Encoding Lookup Unit
	4.6 Interpolation Compute Unit
	4.7 Tensor Compute Engine

	5 Experimental Methodology
	6 Evaluation
	6.1 NeuRex Performance
	6.2 Rendering Quality
	6.3 Source of Performance Gain
	6.4 Sensitivity Study
	6.5 Area and Energy Efficiency
	6.6 Discussion

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

