
NeuRex: A Case for Neural Rendering Acceleration

Junseo Lee Kwanseok Choi Jungi Lee Seokwon Lee Joonho Whangbo Jaewoong Sim

Seoul National University

{junseo.lee, kwanseok.choi, jungi.lee, seokwon.lee, joonho0320, jaewoong}@snu.ac.kr

ABSTRACT

This paper presents NeuRex, an accelerator architecture that ef-

ficiently performs the modern neural rendering pipeline with an

algorithmic enhancement and supporting hardware. NeuRex lever-

ages the insights from an in-depth analysis of the state-of-the-art

neural scene representation to make the multi-resolution hash en-

coding, which is the key operational primitive in modern neural

renderings, more hardware-friendly and features a specialized hash

encoding engine that enables us to effectively perform the primitive

and the overall rendering pipeline. We implement and synthesize

NeuRex using a commercial 28nm process technology and evaluate

two versions of NeuRex (NeuRex-Edge, NeuRex-Server) on a range

of scenes with different image resolutions for mobile and high-end

computing platforms. Our evaluation shows that NeuRex achieves

up to 9.88× and 3.11× speedups against the mobile and high-end

consumer GPUs with a substantially small area overhead and lower

energy consumption.

CCS CONCEPTS

•Computer systems organization→Neural networks; •Com-

puting methodologies → Rendering.

KEYWORDS

Neural rendering, NeRF, neural networks, machine learning, accel-

erators

ACM Reference Format:

Junseo Lee, Kwanseok Choi, Jungi Lee, Seokwon Lee, Joonho Whangbo,

Jaewoong Sim. 2023. NeuRex: A Case for Neural Rendering Acceleration.

In Proceedings of the 50th Annual International Symposium on Computer

Architecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3579371.3589056

1 INTRODUCTION

Neural rendering is a new and rapidly emerging approach that

synthesizes photo-realistic images or videos in a controllable way

using deep neural networks (DNNs) [55]. By encoding scenes and

objects in the weights of deep neural networks, neural rendering

implicitly maps input coordinates into some numeric values such

as colors or radiance. Compared to traditional explicit 3D represen-

tations such as polygonal meshes, voxels, or point clouds, implicit

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06. . . $15.00
https://doi.org/10.1145/3579371.3589056

neural scene representations allow for capturing the fine details of

complex surfaces or shapes in a more compact way.

While neural rendering is a promising approach to a variety

of tasks in graphics such as image super-resolution [11, 33] and

novel view synthesis [35, 39, 51], it requires a significant amount

of computation to achieve high-quality renderings. Conventional

neural rendering is based on the multi-layer perceptron (MLP)

network, which consists of a set of fully-connected layers. The MLP

needs to be queried millions of times to render an image because

every sample point along the ray for each pixel needs to run through

the neural networks to produce an output value that corresponds

to the input coordinate. This makes the neural rendering process

extremely slow even on the high-end consumer GPUs.

As such, there has been a plethora of recent works that aim to

reduce the training and rendering time of neural representations

via algorithmic enhancements [10, 17, 18, 23, 30, 37, 38, 48, 52, 58].

Despite the active research in the graphics community and the

importance of neural scene representations, however, there has

been little to no work that systematically evaluates the performance

of the workload on today’s hardware systems and helps understand

its architectural implications from the hardware perspective.

In this work, we start by investigating the characteristics of

modern neural rendering algorithms and present an in-depth char-

acterization of several representative models to understand their

architectural implications along with compute and memory require-

ments. In particular, we performed a detailed characterization of the

state-of-the-art neural scene representation [37] that substantially

reduces the training and rendering time while also improving the

quality of rendered views compared to others. To do so, instead

of using a large MLP with simple input encodings, the state-of-

the-art exploits the direction of using a smaller MLP with multiple

hash encoding tables that contain trainable feature vectors (i.e., in-

put encoding parameters), each of which captures different grid

resolutions.

Although it performs significantly better than prior works in

both rendering time and quality, we observe that themulti-resolution

hash encoding primitive used in the state-of-the-art model is not

hardware-friendly and leads to several challenges and inefficien-

cies in executing the neural rendering pipeline on general-purpose

computing platforms. Our profiling results on commodity GPUs

reveal that it takes more time to perform multi-resolution hash

encodings than MLP computation, and these two operations are

serialized in execution. In addition, due to the irregular access na-

ture of hash tables, the large encoding table needs to fit into the

on-chip cache; otherwise, the time spent on encoding lookups sig-

nificantly increases, and so does the overall training and rendering

time. Furthermore, each hash entry access only uses four out of

64 bytes of data from a cacheline or off-chip memory, leading to a

substantial waste of the memory bandwidth. The compute cores

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589056&domain=pdf&date_stamp=2023-06-17

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

Figure 1: A volume rendering pipeline with Neural Radiance Fields (NeRF).

are also underutilized because the MLP is small in size, and they

are mostly idle when performing input encodings and hash table

lookups. In short, general-purpose GPUs are an imbalanced de-

sign point and are inefficient in running the state-of-the-art neural

rendering models.

In this paper, we present NeuRex, a neural rendering accelerator

that efficiently performs modern neural graphics computation by

making changes in the execution flow of the rendering pipeline with

algorithmic enhancements and supporting hardware. NeuRex builds

on the key observations from our in-depth analysis to make multi-

resolution hash encodings more hardware-friendly and features

a specialized hash encoding engine that enables us to effectively

perform the primitive and the overall neural rendering pipeline.

The key idea behind our algorithmic enhancement is to parti-

tion the input coordinate grid into several subgrids, each of which

owns a portion of a large hash encoding table. We then arrange the

processing of input coordinates such that we complete processing

one subgrid for all resolutions before moving onto another. This

restricts hash table access to a range of consecutive entries, thereby

allowing the hardware accelerator to load only a part of the hash

table to the on-chip memory at a time; thus, hardware accelera-

tors do not need to employ a multi-megabyte on-chip memory to

perform the multi-resolution hash encoding primitive efficiently.

This also enables the opportunities to break the serialized execution

of input encodings and MLP computation and overlap these two

operations effectively with supporting hardware, thereby leading

to better utilization of overall compute and memory resources in

the accelerator.

We implement the hardware components of NeuRex in RTL

and synthesize them using a commercial 28nm process node. For

performance evaluation with a detailed off-chip memory timing

model, we build a cycle-level simulator that models the NeuRex

architecture and evaluate it on a set of popular tasks and datasets

in graphics. Our evaluation shows that two variants of NeuRex

achieve up to 9.88× and 3.11× speedups compared to the represen-

tative mobile (Jetson Xavier NX; Volta GPU; 12nm) and high-end

consumer (RTX 3070; Ampere GPU; 8nm) computing platforms,

with a small area budget of 3.14mm2 and 21.37mm2. In summary,

this paper makes the following contributions:

• To our knowledge, this is the first work to comprehensively

analyze the performance bottlenecks of themodern neural scene

representation on today’s computing platforms and identify the

root causes of the performance inefficiencies.

• We propose an algorithmic enhancement that makes multi-

resolution hash encodings more hardware-friendly to efficiently

perform the primitive without the need for a multi-megabyte

on-chip memory.

• We present NeuRex, a hardware accelerator that effectively per-

forms neural graphics computation byminimally extending the

existing DNN accelerators. It features a specialized hash encod-

ing engine tailored to the needs of modern neural renderings.

2 BACKGROUND

In this section, we briefly introduce neural scene representations

and discuss the characteristics of the ML-based rendering method.

2.1 Neural Rendering

Neural rendering combines the ideas from classical computer graph-

ics with the recent advances in deep neural networks to render

images or videos. At a high level, a neural rendering pipeline learns

a representation of a mathematical function that parameterizes a

2D or 3D scene using a multi-layer perceptron (MLP) as a function

approximator. Depending on the tasks and objectives, the MLP

learns different implicit representations such as the mapping from

2D coordinates to RGB colors of an image [32] or the mapping from

3D coordinates to the distance to a surface [54]. Note that although

the specific tasks may differ, they share the common idea of using

MLPs as function approximators. In the following, we take as a rep-

resentative task a recent breakthrough of neural representations for

volume rendering, called Neural Radiance Fields (NeRF), to discuss

state-of-the-art algorithms in this field.

2.2 Neural Radiance Fields (NeRF)

A Neural Radiance Field (NeRF) is a method that generates novel

views of complex 3D scenes from a partial set of 2D images. In

NeRF, scenes are represented implicitly in the weights of an MLP

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Figure 2: Model comparison between the original NeRF [35] and

Instant-NGP [37].

using radiance fields.1 The MLP weights are trained with the partial

set of 2D images, and the trained weights are used for rendering

(inference) from a specific viewpoint.

Figure 1 shows how NeRF renders an image from a novel view-

point. First, it generates and shoots a ray for each pixel of the image

from the camera viewpoint. It then takes 𝐾 samples (s1, s2, ..., sk)

along the ray, each of which (si) is a five-dimensional vector that

consists of a 3D position (𝑥i, 𝑦i, 𝑧i) and a 2D viewing direction (𝜃i,
𝜙i) of the i

th sample point. The five-dimensional input vector is

mapped to a higher dimensional space through the stage called po-

sitional encodings. We feed this encoded feature after the positional

encoding into the neural network (MLP) to obtain the color and

density (ci, 𝜎i) of the sample point. After obtaining all the color
and density values from the sampled points, the final pixel color Ĉ

is computed by alpha-blending the set of color and density values

along the ray, as shown in Equation 1. The transmittance Ti, which

is the probability of the ray reaching a point without colliding with

other objects, is computed by using the density (𝜎i) and the distance
between adjacent samples (𝛿i).

Ĉ =
K∑

i=1

Ti𝛼ici, (1)

where Ti = exp(−
∑i−1
j=1 𝜎j𝛿j) and 𝛼i = 1 − exp(−𝜎i𝛿i).

Computation Cost. To render an image, this process needs to be

repeated for every pixel in the image, which leads to a large num-

ber of MLP evaluations. For example, rendering a𝑊 × 𝐻 image

requires𝑊 × 𝐻 × 𝐾 times MLP evaluations. To reduce the compu-

tation cost, NeRF models may adopt algorithm-level optimization

techniques such as early ray termination (ERT) and empty space

skipping (ESS) [30, 48]. When the ray meets the surface, we can

skip the computation for the points behind the surface. It is the idea

of the ERT, and we can detect the solid surface when the accumu-

lated transmittance (Ti) gets lower than the pre-defined threshold

value. The ESS is another optimization technique that ignores the

computation of the sample points in an empty space.

1The radiance field consists of all light rays that flow through every point in every
direction in a 3D space.

2.3 NeRF Model Architectures

The original NeRF model [35] is a pioneering work that demon-

strates the benefit of using positional encodings and radiance fields,

which inspires a large number of subsequent works that build

upon the original NeRF. To understand the performance charac-

teristics and rendering quality of different NeRF model structures,

we choose four representative models for comparisons, NeRF [35],

mip-NeRF [6], NSVF [30], and Instant-NGP [37], which we classify

into two categories.

Original NeRF-based Models. In the original NeRF, the fully-

connected (FC) layers in the MLP are separated into two parts: one

for density (𝜎i) computation and the other for color (ci) computa-
tion. The first part consists of 8 FC layers (with 256 channels per

layer) that produce the density value and a 256-dimensional feature

vector. The feature vector is then concatenated with the encoded

viewing direction (𝐹 (𝜃i, 𝜙i)), and the resulting vector is fed into one
additional FC layer with 128 channels to produce the color value. It

is the forerunner in NeRF, but it takes prohibitively long training

and inference time due to the large and deep FC layers.

mip-NeRF attempts to address the issue of the original NeRF that

the rendering quality is significantly degraded when it renders a

different resolution from the trained images. To mitigate the prob-

lem, mip-NeRF uses information from multiple points in a circular

region instead of a single critical point. However, the main model

architecture is similar to the original NeRF, so it is still bottlenecked

by the long latency of MLP computation. It also does not noticeably

improve the rendering quality when rendering images of the same

resolution. Neural Sparse Voxel Fields (NSVF) exploits a sparse

voxel representation to train the structure that captures the empti-

ness of a scene along with MLP weights. It skips computation for

empty voxels to accelerate training and rendering time, but it is

still slow due to large MLPs.

Parametric Encoding-basedModels. Figure 2 compares the orig-

inal NeRF-based models with Instant-NGP. The key difference of

Instant-NGP compared to the previous NeRF models is the use

of a parametric encoding with multi-resolution hash tables rather

than using a fixed input encoding. All the models previously men-

tioned use an untrainable input encoding, such as frequency encod-

ings [35]. Although it is useful to extract high-dimensional features

from input position vectors, it is unavoidable to use a large MLP

to achieve reasonable rendering quality. Instead of using a fixed

input encoding function, Instant-NGP employs several trainable

hash tables for input encodings.2 This enables the use of a much

smaller MLP and reduces the computation cost, thereby improving

the training and rendering speed while also achieving high-quality

renderings.

2.4 Performance and Rendering Quality

To understand the performance and rendering quality of the rep-

resentative NeRF models, we compare them using four different

datasets: two synthetic (Syn-NeRF [35], Syn-NSVF [30]) and two

real-world (BlendedMVS [57], Tanks&Temples [27]) datasets. We

also choose the scenes with varying image resolutions to have more

generalized results.

2The encoding parameters are also learned alongwith theMLPweights during training.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

Table 1: Peak signal-to-noise ratios (PSNR) comparison.

Dataset Syn-NeRF Syn-NSVF BlendedMVS Tanks&Temples

Scene Mic Palace Fountain Family

(800×800) (800×800) (768×576) (1920×1080)

NeRF [35] 16.10 15.96 14.73 14.44

mip-NeRF [6] 15.82 16.04 15.14 14.64

NSVF [30] 30.84 28.58 23.27 26.73

Instant-NGP [37] 40.33 35.86 30.70 33.42

Figure 3: Rendering time of four representative NeRFmodels across

various datasets (log scale).

Table 1 compares the peak signal-to-noise ratio (PSNR) of the

four representative models after training.3 We train each NeRF

model for 100K iterations (which takes a few to tens of hours)

except for Instant-NGP. Although we train Instant-NGP for less

than 10 minutes (31K iterations), it reaches a significantly higher

PSNR compared to others across all the datasets.

Figure 3 shows the rendering (inference) time of each trained

model.4 With the best quality of a rendered image, the rendering

time of Instant-NGP is also significantly lower than others. Note

that the original NeRF-based models can hardly be used in real-

time or on-device renderings as they render images at less than one

frame per second (FPS). In particular, for the real-world scene with

1920×1080 FHD resolution (Family), it takes about 8∼100 seconds to

render a single image. In contrast, we see that Instant-NGP renders

a single image significantly faster than others.

In short, the original NeRF-based models require a significant

amount of computation as every sample point needs to run through

the large and deep MLP. Considering the points are sampled from

a single ray, and each ray is sampled from every pixel, they are

not likely viable solutions for real-time or on-device rendering

tasks. To alleviate the problem, state-of-the-art algorithms focus

on reducing the size of compute-intensive MLPs without losing the

quality of rendered images. The parametric encoding is one promis-

ing way to achieve this, which effectively reduces the amount of

computation while maintaining or even increasing the image qual-

ity over the original NeRF-based models. In the following section,

we further investigate the state-of-the-art neural representation

that employs trainable input encoding parameters (i.e., feature vec-

tors) [37], which is our target for acceleration.

3 MOTIVATION

In this section, we first explain the parametric encodings and the

neural rendering pipeline used in Instant-NGP (Sections 3.1 and 3.2).

3The peak signal-to-noise ratio (PSNR) is one of the standard metrics to measure model
quality. Higher is better.
4We run the experiments on Titan RTX due to the large memory requirement of NSVF.

Table 2: Parameters for multi-resolution hash encodings (default).

Parameter Symbol Value

Num. of resolution levels (num. of hash tables) 𝐿 16

Num. of entries per level (hash table size) 𝑇 219

Feature dimensions per entry 𝐹 2
Each feature size 2 bytes

Figure 4: Multi-resolution hash encodings.

We then identify the key operations that contribute to the over-

all rendering time (Section 3.3) and discuss our observations and

bottlenecks of the execution flow on GPUs (Section 3.4).

3.1 Multi-resolution Hash Encoding

Instant-NGP [37] introduces a new primitive calledmulti-resolution

hash encoding. Figure 4 shows how a hash table-based input en-

coding maps the input positions to the encoded feature. First, for

a sample point s, we find the voxel that surrounds the point and

obtain an 𝐹 -dimensional feature vector for each vertex of the voxel

by indexing into the hash table. The hash index is computed using

the hash function in Equation 2. Each of xv, yv, zv corresponds to
the vertex coordinate of the voxel grid. P1 and P2 are unique, large

prime numbers, and ⊕ is the bit-wise XOR operator.

h(xv, yv, zv) = (xv · 1) ⊕ (yv · P1) ⊕ (zv · P2) mod T (2)

We then perform linear interpolation of the eight 𝐹 -dimensional
feature vectors to obtain an 𝐹 -dimensional feature vector for the
sample input point at resolution level 𝐿. We repeat these steps 𝐿
times, each with a different grid resolution (i.e., a different hash

table), and concatenate the 𝐿 feature vectors from all levels, which

results in an 𝐹×𝐿-sized input vector for the MLP.
The multi-resolution hash encoding uses 𝐿 as the number of res-

olution levels. The base (i.e., coarsest) grid resolution is set to 16, so

there are 163 voxels in the base resolution (i.e., 𝐿=0). The resolution
is scaled by a constant factor for finer levels (e.g., 𝐿=1,2,3,...), thereby
increasing the total number of voxels in a cubic fashion. Each reso-

lution level is assigned to an independent hash table, each of which

has up to 𝑇 hash entries. Each entry contains an 𝐹 -dimensional
feature vector, so the total number of trainable parameters for the

multi-resolution hash encoding is 𝐿×𝑇×𝐹 . Table 2 shows the default
parameters for multi-resolution hash encodings in [37]. We use the

same values for our discussions in the following sections.

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Figure 5: The model architecture in [37]. All parameters are the default values used for NeRF in the original paper.

3.2 GPU Execution Flow

Figure 5 shows the high-level execution flow of the rendering

pipeline with the multi-resolution hash encoding. Initially, there are

Npoint input positions, and they go through 16 hash tables and pro-

duce an Npoint×32 input feature matrix. The density MLP takes as

input the feature matrix and produces an Npoint×16 matrix, which

is then concatenated with an Npoint×16 encoded direction matrix.

The resulting Npoint×32 matrix is fed into the color MLP to produce

3-D RGB values (i.e., ci) for each input position. The number of

input positions (Npoint) can be from hundreds of thousands to tens

of millions depending on the image resolution; for instance, an FHD

image has two million pixels. Note that we need to perform eight

encoding lookups per level for each input position, which leads to

a significant number of hash table lookups in total.

3.3 Latency Breakdown

Figure 6 decomposes the rendering time into five major opera-

tions: Hash Encoding (ENC), Feature Computation (MLP), Ray Com-

paction (Compaction),5 Empty Space Skipping (ESS), and Early Ray

Termination (ERT). For the experiments, we run Instant-NGP with

the large Fox dataset (1920×1080 FHD resolution) on a range of

GPUs including the edge device (Jetson Xavier NX).

Figure 6: Latency breakdown on GPUs (Instant-NGP/Fox dataset).

The results show that ENC and MLP are the major performance

bottlenecks among the operations. Note that Feature Computation

(MLP) takes less than half of the rendering time, which is quite

different from the original NeRF-based models where MLP com-

putation dominates the overall rendering time. At the same time,

Hash Encoding (ENC, which includes hash table lookups and some

5Ray compaction is the process to compact the rays into a dense data structure after
the ERT.

computation for interpolation) takes more than 40% of the render-

ing time. Note that this ENC operation does not fit well into the

contemporary DNN accelerators.

3.4 Observations and Inefficiencies

We further investigate the multi-resolution hash encoding primitive

and make the following key observations.

Observation I: Performance portability of multi-resolution

hash encodings. Although the time complexity of a hash table

lookup is 𝑂 (1), it is not a hardware-friendly operation. A well-

designed hash function outputs seemingly random hash indexes,

which lead to irregular accesses to the hash table. As previously

mentioned, the state-of-the-art neural representation model trains

16 (𝐿) hash tables (along with MLP weights), each of which is a
multi-megabyte in size (e.g., sixteen 2MB hash tables in [37]). As

such, they do not all fit in the on-chip memory of most of today’s

mobile or consumer GPUs/accelerators, thus the hash table access

can lead to frequent off-chip memory accesses if we naïvely per-

form the operation. Furthermore, each hash entry access only takes

four bytes (𝐹=2) out of 64 bytes of data from the off-chip memory,

leading to a substantial waste of off-chip memory bandwidth.

For the high-end consumer GPUs where the on-chip memory

capacity is larger than a single hash table, one solution is to load

the hash table into the on-chip memory level by level and stream

through all sample points to obtain anNpoint×2 partial input feature

matrix for the corresponding level (𝐿) before moving onto another
(𝐿+1) to avoid the costly off-chip memory access (which is the

operation flow on GPUs); note that even in this case, the hash

encoding occupies more than 40% of the rendering time, as shown

in Figure 6. For the mobile and low-end/mid-range consumer GPUs,

however, the trained model does not efficiently run because even

a single hash table does not fit in the small on-chip cache, thereby

leading to frequent off-chip memory accesses.

Observation II: Serialized execution of rendering pipeline. As

previously discussed, two major operations that spend the most

of the rendering time are hash encodings (ENC) and feature com-

putation (MLP). In the execution flow with the multi-resolution

hash encoding, these two main operations are serialized in execu-

tion although they have different compute and memory require-

ments; ENC is memory bandwidth-intensive, whereas MLP is more

compute-intensive.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

Figure 7: Average number of accesses to hash entry groups. For clar-

ity, hash entries are sequentially grouped as the number of bins (bin

size: 𝐿1=112, 𝐿13=4096) starting from entry 0 (Fox/Iteration 0).

Figure 8: Execution pipeline in NeuRex.

Note that because the Npoint×32 input feature matrix is con-

structed level by level (i.e., column-wise), we cannot perform MLP

computation for the rest of the pipeline until we finish hash table

lookups for the finest level (𝐿=15). Ideally, if we overlap the execu-
tion of ENC and MLP in parallel, we can speed up the rendering

pipeline. NeuRex enables overlapping the executions of these two

operations and also better utilizes hardware resources by making

changes in the execution flow with algorithmic optimizations and

supporting hardware.

Observation III: Difference in access characteristics across dif-

ferent levels of hash tables. Figure 7 shows the distribution of

hash entry accesses for the coarse level (𝐿=1) and fine level (𝐿=13)
tables. For the resolution levels at which a hash collision does not

occur (e.g., 𝐿=1), a hash table entry is solely assigned to a single

vertex point of the voxel grid. Also, there is a large number of

sample positions in a voxel, which share the same vertex points.

Consequently, the accesses are somewhat localized to a few entries,

and the number of accesses for each entry is high. On the other

hand, for finer resolution levels (e.g., 𝐿=13), the accesses are more
evenly (and randomly) distributed across the hash entries, while

the number of accesses for each entry is quite low. Based on this

observation, NeuRex features two different types of specialized on-

chip memories to effectively serve the encoding lookups of coarser

and finer levels.

4 NEUREX: NEURAL GRAPHICS ENGINE

In this section, we present NeuRex, a neural graphics engine that

leverages the insights from Section 3 to efficiently perform neural

graphics computation.

4.1 Execution Flow in NeuRex

Figure 8 shows the high-level execution flow of the neural render-

ing pipeline in NeuRex. The main difference between the NeuRex

execution flow and the original one is the pipelining and overlapping

of the hash encoding (ENC) and MLP operations. For example, as

previously discussed, these two main operations are serialized in

Figure 9: Restricted hashing.

the original flow that both ENC and MLP contribute to the crit-

ical path latency. However, NeuRex breaks the serialization and

executes them in parallel by processing the input positions at the

granularity of a set of positions, which we refer to as a batch. For

instance, we first load a batch of input positions (𝐵) and perform
multi-resolution hash encodings for the batch. We process the batch

level by level to exploit the locality of hash entries within a batch.

Once the ENC is done, we obtain a 𝐵 × 32 partial input feature

matrix, which we can feed into the MLP. Then, while the previous

batch goes through the FC layers, we fetch a new batch and perform

the ENC operation. By doing so, NeuRex better utilizes the compute

units and memory bandwidth.

4.2 Restricted Hashing

We propose a hardware-friendly multi-resolution hash encoding,

which effectively enables the NeuRex execution flow. The key idea

of our enhancement is to partition the input coordinate grid into

several subgrids, each of which owns a portion of a large hash table

for each level. We then arrange the processing of input points in a

way that we finish processing a subgrid for all resolutions before

processing another. In this way, we effectively restrict the hash table

access for the vertex feature lookups to a range of consecutive hash

entries, rather than being randomly distributed across the table.

This provides us with two key benefits. First, it allows the ac-

celeration devices with small on-chip memories (e.g., mobile/edge

devices or low-end GPUs) to avoid the costly off-chip memory

accesses and perform encoding lookups more efficiently by load-

ing only a portion of the hash table into the on-chip memory at a

time, thus enabling performance portability of multi-resolution hash

encodings across a range of compute platforms. Second, it offers

opportunities for a batch of inputs within a subgrid to efficiently

perform hash encodings in parallel with the MLP computation of

another batch.

Figure 9 shows the restricted hashing mechanism, in which we

arrange the input positions that belong to the same subgrid to

be clustered in a set of batches. By doing so, the region of the

hash table accessed from the same batch is restricted to a small

subset of the table, which we refer to as a subtable. In the figure,

for example, the sample positions in Subgrid 6 only access the hash

entries in Subtable 6, while being indexed by a new hash function.

When we divide the 3D scene (i.e., 3D grid) into 𝑅 subdivisions for
each dimension, the number of subgrids becomes 𝑅3, and the hash
table is also equally divided into 𝑅3 subtables. We refer to 𝑅 as the
subgrid resolution (sugbrid_res). Then, for each input position (p),

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Figure 10: Overview of NeuRex architecture.

we can compute to which subgrid (subgrid_id) the input belongs

using Equation 3.

subgrid_id =
2∑

k=0

�pk · subgrid_res� · subgrid_resk, (3)

where p = (p0, p1, p2) = (x, y, z) and x, y, z ∈ [0, 1).
By using the subgrid index for a batch, we load the correspond-

ing subtable onto the on-chip buffer. This allows us to perform

encoding lookups solely from the on-chip memory without any fur-

ther access to the off-chip memory. Note that the new hash index

used for accessing the entries in the subtable can be computed us-

ing Equation 2 with a minor modification for the modulo operation

(i.e., using the subtable size instead of the table size).

4.3 Architecture Overview

Figure 10 shows the overview of our accelerator design, which

consists of two main modules: Encoding Engine (EE) and Tensor

Compute Engine (TCE). The TCE module is similar to the con-

ventional DNN accelerators that employ a TPU [24]-like systolic

array with memory buffers for data movement. NeuRex minimally

extends the existing DNN accelerator design with a dedicated hard-

ware module (EE) that efficiently performs multi-resolution hash

encodings.

At a high level, the encoding engine is responsible for performing

hash table lookups and interpolating the feature vectors obtained

from the lookups to produce an input feature vector. To do so, a

batch of input positions is first streamed into the position buffer from

the off-chip memory. The positions in each batch are processed for

all 𝐿 levels of encoding lookups before we process the next batch.
The Index Generation Unit (IGU) in the EE generates the hash

indexes and interpolation weights of the neighbor vertices for each

input position. With the hash indexes, the Encoding Lookup Unit

(ELU) fetches the encoded vertex features from the on-chip buffers

(Grid Cache or Subgrid Buffer). After that, the final input feature

Figure 11: The process of trilinear interpolation.

vector is computed by the Interpolation Compute Unit (ICU) and is

sent to the input buffer of the TCE. The TCE performs MLP using

the systolic array. Because the weights are small in size and are

heavily reused, we choose a TPU-likeweight stationary dataflow for

the systolic array. In the following, we describe the key hardware

components of the encoding engine in detail.

4.4 Index Generation Unit

The Index Generation Unit (IGU) consists of 𝑁 compute units (64/8

units in our NeuRex-Server/NeuRex-Edge designs) that perform

computation in parallel. The IGU is composed of three main parts:

position scaling, hash index computation, and interpolation weight

computation.

The IGU first scales up the input coordinate because it is in the

bounding box in which it is normalized to the coordinate between 0

and 1. Based on the resolution level, which corresponds to a specific

resolution, we scale up the input to the coordinate system of the

target level. This can be done by simple floating-point multiply-

and-add operations. After scaling, we obtain two useful pieces

of information. The integer part of the coordinate indicates the

grid index, and the fractional part indicates the relative position of

the point within its voxel. The grid index is used for locating the

neighbor vertices of the voxel for hashing, and the relative position

is used for computing interpolation weights for the vertices.

Given the grid index, which corresponds to the base coordinate of

the voxel, the IGU computes all the coordinates of neighbor vertices

by adding one or zero to each coordinate value. Figure 11(a) shows

how to obtain the coordinates of seven neighbor vertices when the

base coordinate is (3, 4, 2). These coordinates (including the base)
are the inputs of the hash function in Equation 2. Each Hash Index

Compute Unit in the IGU is responsible for computing the hash

indexes of the vertices in parallel. In our design, the compute units

are fully pipelined, and the IGU produces 𝑁 × 8 hash indexes per

cycle.

To aggregate the features of the vertices, we need to compute an

interpolation weight for each vertex. The weight is determined by

the distance from the input position to each vertex of the voxel, as

shown in Figure 11(b). Note that a larger weight is assigned to the

vertex that is closer to the sample position, which implies that the

feature vector of the vertex is more representative of the position.

Equation 4 shows how to compute the interpolation weight. The

Interpolation Weight Compute Unit in the IGU performs this opera-

tion with multipliers and subtractors, and the IGU also produces

𝑁 × 8 weights per cycle. Note that the hash index and interpolation

weight compute units are not shown in Figure 10 for brevity.

winterp = (1 − |xs − xv |) · (1 − |ys − yv |) · (1 − |zs − zv |), (4)

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

Figure 12: Grid cache (GC) structure.

where (xv, yv, zv) and (xs, ys, zs) are the vertex and scaled position
coordinates, respectively.

4.5 Encoding Lookup Unit

The Encoding Lookup Unit (ELU) is responsible for performing

hash table lookups of the vertex points. Note that for a sample input

point, we fetch 8×𝐿 hash table entries. As we discuss in Section 3.4,
we observe that the access characteristics of hash tables are different

across the resolution levels. We can divide the resolution levels into

two categories: coarse and fine levels. For coarse levels, the accesses

show high locality to a relatively small number of hash entries. In

contrast, the accesses to the finer levels are evenly distributed across

the entries in the hash table. Based on the observation, we deal

with two types of hash table lookups in different ways. We use a

grid cache for coarse levels and a subgrid buffer for fine levels.

Grid Cache. For coarse resolution levels (e.g., 𝐿=0,1,2,...), the num-
ber of input positions that are included in the same voxel is large

enough. At the same time, the granularity of hash table access for

an input position is not a single hash entry but is a set of entries for

eight vertices of the voxel. We exploit the observation by coalescing

the eight entries into a single data block with additional information

about the voxel grid; i.e., level index (lid) and grid index (gid). Then,

for an input position, we fetch the coalesced eight vertex features

using its gid with a single access.

Figure 12 shows the grid cache (GC) structure. The GC consists of

heavily-banked SRAMs, eachwith an independent address decoding

logic, in order to sustain high on-chip memory bandwidth. Each

data block in the GC contains the feature vectors of eight vertices

for a voxel (8×4B=32B). The gid computed by the IGU is used to

index into the GC. The tag contains four fields: a 1-bit valid, 18-bit

msbs of gid, a 4-bit level index lid, and a 3-bit counter. The GC is

a direct-mapped cache style buffer, and the lsbs of gid are used to

index the bank and data block.

Note that if the GC does not contain the vertex features for a gid

request, it sends the memory requests for eight vertex entries to off-

chip memory while recording the request addresses andmetadata in

the request buffer. When the data is returned from off-chip memory

one by one, we find the matching address in the request buffer and

fill the data block entry while incrementing the counter. Note that

it generates multiple 64B requests, and we only take 4B out of 64B

for each returned data. The data block becomes only valid once all

the eight entries are filled from the off-chip memory.

Subgrid Buffer. For finer levels (e.g., 𝐿=...,13,14,15), we load each
partitioned hash table into the subgrid buffer for encoding lookups.

Note that the subgrid buffer contains all the hash entries required

to process the input positions for a resolution level in a subgrid;

thus, there is no further off-chip memory access until we move on

to another level unlike the GC. As in the grid cache, the subgrid

buffer is also heavily-banked to sustain high memory bandwidth

(32 banks in our implementation). Unlike the grid cache, however,

each bank of the subgrid buffer provides a single hash entry (i.e., 4

bytes) for a lookup. So, a bank conflict occurs when any of the eight

vertex lookups falls onto the same bank. For 32 banks, however, we

empirically find that the overall rendering time does not noticeably

increase as the hash encoding operation is overlapped with MLP

computation in NeuRex. We use the subgrid buffer from Level 8

for our evaluation as it shows the best overall rendering time. Note

that NeuRex supports an arbitrary value if needed.

4.6 Interpolation Compute Unit

Once the encoding lookups are finished, we aggregate the vertex

features from the lookups with the corresponding weights. The

Interpolation Compute Unit (ICU) performs this operation in four

stages. In the first stage, the eight features are multiplied by the

corresponding weights. The other three stages are consumed by

an adder tree. The ICU has 64/8 fully pipelined compute units (in

NeuRex-Server and NeuRex-Edge, respectively), and it sends the

aggregated feature vectors to the input buffer in the TCE.

4.7 Tensor Compute Engine

The MLP in neural rendering comprises only a few small FC layers.

The number of sampled inputs, on the other hand, is orders of

magnitude larger than the width of FC layers. Small MLP weights

and a large input dimension lead to a huge opportunity for layer

fusion, as observed in other work [3]. We also adopt fusion-based

MLP computation for our accelerator design. Given a batch of input

features, the Tensor Compute Engine (TCE) works on a series of

FC and activation layers and generates the final outputs without

storing the intermediate features back to the off-chip memory. The

TCE has large enough input and output buffers to store them.

5 EXPERIMENTAL METHODOLOGY

Hardware Implementation.We implement the hardware compo-

nents of NeuRex in RTL using SystemVerilog. The functionality of

each component is verified via RTL simulations with synthetic data.

We synthesize the NeuRex components using a commercial 28nm

technology node with Synopsys Design Compiler [53]. On-chip

SRAMs are also generated from a commercial memory compiler

with the same technology. The position/subgrid buffers in the EE

and the input/output buffers in the TCE are double-buffered. The

subgrid buffer is sized at 128KB with 32 banks for the case where

the per-level table size becomes significantly larger in the future,

but it can be as small as 32KB for our evaluation. The grid cache is

sized at 64KB with 32 banks, and the request buffer can handle up

to 64 addresses and 64 merged requests per address. We design our

architecture to run at a 1GHz clock frequency for most components

except for the on-chip memory that runs double-pumped at 2GHz

to provide high on-chip memory bandwidth, as similar to [50].

To evaluate the system-level performance of NeuRex with off-

chipmemory, we also implement a cycle-level simulator that models

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 3: Evaluated workloads.

Task Dataset Scene (Resolution) Type

NeRF

Synthetic-NeRF [35] Mic (800×800) Synthetic

Synthetic-NSVF [30] Palace (800×800) Synthetic

BlendedMVS [57] Fountain (768×576) Real world

Tanks&Temples [27] Family (1920×1080) Real world

Instant-NGP [37] Fox (1080×1920) Real world

Neural SDF The Stanford Models [1]
Bunny (1920×1920) -

Armadillo (1920×1920) -

Image Approximation -
Tokyo (6144×2324) -

Albert (3250×4333) -

the NeuRex architecture with Ramulator [26] for DRAM timing.

We collect position traces by running the workloads on GPUs and

use them as input for the simulator. The timing parameters of the

simulator are determined based on the RTL synthesis results. We

measure the accelerator performance using the cycles reported by

the simulator. The simulator also outputs the number of SRAM

accesses, which we use to obtain the energy numbers of on-chip

buffers. The energy numbers of the off-chip memory are computed

using the DRAM statistics from the memory simulator [26].

We evaluate two variants of NeuRex: NeuRex-Edge and NeuRex-

Server. NeuRex-Edge is a design point when there are strict area

and power constraints, which is a typical case for mobile and edge

computing platforms. NeuRex-Server is a scaled-up architecture

for high-end computing platforms. The batch size is set to 1024

and 8192 for NeuRex-Edge and NeuRex-Server. We configure the

off-chip memory of NeuRex-Edge as LPDDR4-3200 [4] and ana-

lyze the statistics using DRAMPower [9, 34]. HBM2 [5] is used for

NeuRex-Server with the energy model from FGDRAM [44]. We use

a multiple of a 32 × 32 systolic array instead of using a larger one;

this improves the utilization of the compute units. The TCE consists

of one and sixteen 32 × 32 systolic arrays for the NeuRex-Edge and

NeuRex-Server, respectively. Section 6.5 discusses the hardware

configurations and energy efficiency of two variants of NeuRex.

Baselines.We compare our accelerator designs with two different

classes of computing platforms. We choose NVIDIA Jetson Xavier

NX [42] as a representative of edge devices. Also, RTX 3070 [43] is

selected as high-end consumer-level rendering acceleration hard-

ware. We use and modify the author-released code that includes

heavily-optimized CUDA kernels (e.g., fused MLP and other opti-

mizations for better tensor core utilization). We measure the perfor-

mance and power consumption of each GPU by using the built-in

hardware counters. Note that RTX 3070 is fabricated using the Sam-

sung 8nm process node, which is a couple of generations advanced

compared to the technology node used for NeuRex (28nm).

Workloads. Table 3 shows the workloads that we use to evaluate

our design. We carefully select a range of synthetic and real-world

datasets from several prior works to cover the scenes with varying

resolutions and complexity. The number of initial rays is propor-

tional to the resolution of a rendering image, while the number of

ray sampling iterations depends on how realistic the scene is. In

addition to NeRF, we also evaluate our design with other graphics

tasks, such as neural signed distance functions (SDF) and 2D image

approximation, to demonstrate the general applicability of the para-

metric encoding-based neural scene representations in Section 6.6.

Figure 13: Speedup of NeuRex over GPUs.

Figure 14: Speedup on hash encodings (ENC) and feature computa-

tion (MLP).

6 EVALUATION

6.1 NeuRex Performance

Figure 13 shows the performance of NeuRex over RTX 3070 and

Xavier NX. On average, NeuRex-Server and NeuRex-Edge achieve

2.88× and 9.17× speedups over the baseline GPUs. It is worth noting

that NeuRex-Edge exhibits a higher speedup over the baseline than

NeuRex-Server. This is because irregular accesses to large encoding

tables quickly become a performance bottleneck in the GPU execu-

tion when the GPU has a small on-chip memory capacity (e.g., a

256KB L2 cache in Xavier NX). By employing restricted hashing and

loading a portion of the encoding table at a time, NeuRex enhances

the performance portability of the multi-resolution hash encoding.6

Figure 14 compares the performance of NeuRex and GPUs for

two key operations in modern neural renderings: hash encodings

(ENC) and feature computation (MLP). Note that the speedup shown

in Figure 14(a) comes from the restricted hashing algorithm and spe-

cialized on-chip memory design. Figure 14(b) shows that NeuRex

performs MLP computation faster despite the lower peak compute

throughput compared to the GPUs. This is because the GPU ten-

sor cores are underutilized due to small FC layers, whereas the

TCE in NeuRex achieves higher compute utilization. Also, the over-

all speedup of NeuRex (Figure 13) is higher than the individual

speedups for ENC and MLP because these two operations are seri-

alized in the original execution flow, whereas NeuRex enables them

to be overlapped thanks to the restricted hashing.

6.2 Rendering Quality

Restricted hashing slightly modifies the multi-resolution hash en-

coding to make it hardware-friendly. To demonstrate that our pro-

posed scheme does not degrade the quality of rendered images, we

compare the average PSNR between the original hash encoding

primitive (Org-Hash) and the restricted one (Ours). For each scene,

we obtain PSNRs from 10 different camera views and average them

to generalize the result.

6We use 64 subgrids for restricted hashing in our evaluation.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

Figure 15: Rendering quality (PSNR) of the original hash encoding

(Org-Hash) and restricted hashing (Ours).

Figure 16: Rendered images. Models are trained for 31K iterations.

Figure 15 shows that there is a negligible PSNR drop (0.7%∼3.9%)

over the baseline when restricted hashing is applied to the default

table size in [37] (Ours-DT; 2MB per level). Note that Ours-DT is

already superior to the original NeRF-based models that do not

use hash encodings. As discussed in Section 4, restricted hashing

limits each batch to accessing input encodings only within a single

subgrid buffer. Consequently, increasing the hash table size has less

impact on performance as only a portion of the table needs to be

loaded on-chip at a time. Based on this observation, we configure

our model with a 4× larger hash table (Ours-LT; 8MB per level) to

further improve PSNRs without compromising performance. The

results show that Ours-LT leads to only a minor 1.1% decrease

in PSNR for the worst case, and for several other scenes, it even

produces higher PSNRs than Org-Hash.

Figure 16 compares the reference image to the rendered ones us-

ing the original primitive (Org-Hash) and restricted hashing (Ours)

for the scene that exhibits the highest PSNR drop. We see that Ours-

DT/LT does not degrade the rendering quality, and interestingly,

in some parts, the images produced using restricted hashing look

closer to the reference image than Org-Hash even though the PSNRs

are lower. This could be because some parts experience fewer hash

collisions than the case with a single hash table in Org-Hash. Note

that the off-chip memory is large enough to accommodate the in-

creased hash tables, which makes restricted hashing an attractive

solution for edge and mobile platforms.

6.3 Source of Performance Gain

Figure 17 shows the speedup from each component in NeuRex. We

can divide NeuRex into two key components: grid cache (GC) and

restricted hashing (RH) with the subgrid buffer. By accumulating

each optimization from the baseline, we evaluate three variants of

NeuRex: Baseline, GC, and GC+RH. The baseline is the batch-based

execution model with no optimization. Note that GC and RH are

exclusively used for encoding lookups of the coarse and fine levels,

respectively. The level threshold is set to eight. Meanwhile, for the

variants that do not employ the GC or RH, we use a 2MB cache,

Figure 17: Source of gain. Speedup of variants isolating each opti-

mization in NeuRex.

Figure 18: Speedup across the batch and grid cache sizes.

which is the size of a single hash table, to model a conventional

cache in GPU. All the configurations are adopted for NeuRex-Server.

The speedup of GC over the baseline comes from utilizing the

on-chip memory bandwidth more effectively than the conventional

cache for coarse levels. In the baseline, we need to access the cache

eight times to obtain all the vertex features for a single sample

point. Also, each access only takes 4B out of a 64B cacheline, which

leads to a waste of on-chip bandwidth. In contrast, the grid cache

provides the coalesced eight vertex features in a single access, thus

effectively serving the hash encoding lookups with a small cache

capacity for coarse levels. By maximizing the hash entry reuse in

the subgrid buffer for fine levels, NeuRex (GC+RH) further improves

performance over the baseline with GC.

6.4 Sensitivity Study

This section evaluates how NeuRex performance varies with differ-

ent hardware resource configurations. In particular, we focus on

two configurations: batch size and grid cache size. Figure 18 shows

the speedup over the GPU across the batch and grid cache sizes.

We show the results of NeuRex-Server only with the Fox dataset as

the general trend holds.

Batch Size. The batch size affects the performance because a larger

batch can increase the temporal locality of the grid cache and im-

prove the compute utilization of TCE. However, a larger batch leads

to an increase in the size of some on-chip buffers, such as the po-

sition buffer. We increase the batch size from 2048 to 32768 and

observe that the speedup does not noticeably increase after a size of

8192. This is because the streaming latency from off-chip memory

to fill the double-buffered subgrid buffer is mostly hidden by the on-

chip memory access latency from encoding lookups for fine levels.

We choose a batch size of 8192 and 1024 to balance the performance

and area overhead for NeuRex-Server and NeuRex-Edge.

Grid Cache Size.We observe that a small grid cache is sufficient

to achieve the full benefit of the grid cache. We perform a sweep

of grid cache sizes from 16KB to 256KB and see that the speedup

noticeably increases until 64KB but not much for larger caches. The

grid cache size is closely related to the number of unique voxels in

coarse levels because each cacheline has the eight vertex features

of a voxel. Since most input batches belong to less than 2048 unique

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 4: Area and power of NeuRex (NeuRex-Server / NeuRex-Edge).

Component Remarks Area [mm2] Power [W]

Systolic Array 16×(32×32) / 1×(32×32) 7.68 / 0.48 3.04 / 0.19

Weight Buffer 20KB / 20KB 0.04 / 0.04 0.02 / 0.02

Input Buffer 2×1MB / 2×128KB 3.39 / 0.57 0.36 / 0.26

Output Buffer 2×1MB / 2×128KB 3.39 / 0.57 0.36 / 0.26

Total TCE 14.50 / 1.66 3.78 / 0.73

Position Buffer 2×96KB / 2×12KB 0.43 / 0.05 0.20 / 0.02

Grid Cache 64KB / 64KB 0.14 / 0.14 0.06 / 0.06

Subgrid Buffer 2×128KB / 2×128KB 0.57 / 0.57 0.26 / 0.26

Request Buffer 16KB / 8KB 0.03 / 0.01 0.08 / 0.04

Index Generation Unit 64 units / 8 units 4.80 / 0.60 1.34 / 0.16

Interpolation Compute Unit 64 units / 8 units 0.90 / 0.11 0.38 / 0.05

Total EE 6.87 / 1.48 2.32 / 0.58

Total 21.37 / 3.14 6.10 / 1.31

Figure 19: Energy efficiency of NeuRex over GPUs.

voxels in coarse levels, we can cover most of the voxels with a small

grid cache. We use a 64KB grid cache in our design.

6.5 Area and Energy Efficiency

Table 4 shows the area and power numbers of NeuRex, which

indicate that NeuRex can be implemented with small areas and

powers. Note that we implement a TPU-like TCE, but one can

choose other designs. For the encoding engine, which is the key

component in NeuRex, the largest area overhead is the IGU as it

consists of multiple FP and integer MAC units. However, the areas

of NeuRex-Server and NeuRex-Edge are both negligible compared

to the baseline GPU SoCs (i.e., 392mm2 for RTX 3070 and 350mm2

for Xavier NX).

Figure 19 shows the energy comparisons between NeuRex and

GPUs in which NeuRex shows significantly higher energy efficiency

than RTX 3070 and Xavier NX. Note that NeuRex uses a 28nm tech-

nology node, whereas the GPUs are fabricated with more advanced

nodes (8nm/12nm for RTX 3070/Xavier NX). Therefore, instead of

directly comparing the numbers, it is more appropriate to infer that

NeuRex would become even more attractive if it were fabricated

with more advanced technology.

6.6 Discussion

Restricted Hashing and Pipelining on GPUs.While restricted

hashing (RH) and software pipelining (PP) can be applied to GPUs,

we observe that the GPUs do not benefit much from these. In Fig-

ure 20, RH shows the case where we solely apply restricted hashing

to the GPUs. For Xavier NX, restricted hashing helps reduce off-

chip memory accesses as we only load a portion of the hash table

for a subgrid to process on-chip. However, we now feed multiple

smaller input matrices into the MLP, instead of a single large one,

for feature computation of all sampled points. This effectively in-

creases the total execution time of feature computation due to lower

Figure 20: Restricted hashing and pipelining on GPUs.

Figure 21: Speedup on other graphics tasks beyond NeRF.

core utilization for each MLP. Overall, restricted hashing improves

performance, but the increase is limited. RTX 3070 already has

a large L2 cache, so restricted hashing does not help reduce off-

chip memory accesses. Furthermore, due to the same reason for

the edge GPU, the core utilization becomes lower than the case

without restricted hashing. Thus, restricted hashing in fact reduces

performance for most of the scenes except for the Fox dataset.

RH+PP refers to the case where we also apply software pipelin-

ing on top of restricted hashing. Although CUDA now supports

concurrent kernel execution, we have observed that it is challenging

to nicely overlap the execution of complex and optimized kernels,

as also noted in prior work [60], unlike the case of overlapping the

kernel execution with data transfers (e.g., cudaMemcpyAsync). This

is because hardware resources (e.g., registers, shared memory) are

limited, and the CUDA runtime does not effectively schedule thread

blocks from multiple complex kernels; users have limited control

over it. We observe that only small portions of execution between

the hash encoding andMLP kernels can be overlapped. On the other

hand, the overheads to enable overlapping (e.g., synchronization)

are higher, so RH+PP even decreases the performance compared to

RH. We also observe that the overlapped portion can be increased

by reducing the resource usage of each kernel, but this leads to an

increase in execution time for each kernel.

Long-Term Viability of NeuRex. As discussed in Section 2.3,

Instant-NGP does not significantly alter the NeRF model architec-

ture but introduces a simple change in the way the input positions

are encoded by employing several learnable hash tables. This in-

put encoding approach bears some resemblance to the positional

encoding and word embedding used in Transformer-based mod-

els [7, 14, 56], which have now become essential elements in natural

language processing (NLP). Similarly, the hash encoding primitive

can be applied to other graphics workloads or tasks, such as neu-

ral signed distance functions (SDF) [46] and image approximation

(Gigapixel). Figure 21 shows that NeuRex also helps improve perfor-

mance for SDF and image approximation over GPUs. We envision

that this new input encoding technique will be widely adopted in

the future whenever applicable, and NeuRex can help improve the

performance of these workloads beyond NeRF.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA J. Lee, K. Choi, J. Lee, S. Lee, J. Whangbo, and J. Sim

7 RELATEDWORK

Deep Learning for Graphics. Graphics applications are widely

adopting deep learning approaches to improve their quality. One

of the recent works, NeRF [35], demonstrated promising results for

volume renderings through a neural network that comprises a posi-

tional encoding and a large MLP. Subsequent studies [6, 30, 48, 58]

improve on the NeRF work by focusing on the MLP. Although these

works improve the training/rendering time or rendering quality,

Instant-NGP [37] substantially outperforms other works by exploit-

ing the idea of multi-resolution hash encodings. NeuRex focuses

on the parametric encoding-based models that are captivating.

Domain-Specific Acceleration. Both hardware and software op-

timization techniques have been developed for the traditional ray

tracing-based rendering pipeline [8, 49]. Commercial GPUs now

feature acceleration modules [8] to speed up the tree traversal in

ray tracing, and some recent work improves the ray tracing perfor-

mance on GPUs with architectural support [29, 31]. In contrast, our

work focuses on the modern neural rendering pipeline, and NeuRex

is the first work that accelerates neural rendering models with para-

metric encodings. Hardware accelerators for DNNs have also been

extensively explored [3, 12, 13, 15, 16, 21, 24, 25, 28, 36, 40, 41, 47].

DNN models can be pruned with minimal accuracy loss, provid-

ing architects with an opportunity to skip unnecessary computa-

tion [20, 22]. Popular neural network primitives (e.g., ReLU) also in-

troduce zeros during computation. Sparse accelerators exploit these

opportunities to efficiently performDNN inference [2, 19, 21, 45, 59].

NeuRex can take advantage of some of the optimizations in these

works, but the existing DNN accelerators are unlikely to be used

for modern neural renderings out of the box.

8 CONCLUSION

Neural rendering gains significant traction as a promising method

for synthesizing complex scenes from novel viewpoints. This work

takes a careful look at the modern neural rendering model, which

significantly enhances rendering performance and quality over oth-

ers by employing multi-resolution hash encodings. We observe that

the hash encoding operation now becomes the performance bot-

tleneck in conventional hardware and needs to be more hardware-

friendly to achieve its full potential. Based on our analysis, we

present NeuRex, a specialized accelerator that features a novel hash

encoding engine for modern neural renderings. NeuRex exploits our

proposed restricted hashing to mitigate irregular access to off-chip

memory and enable concurrent execution of key operations in the

neural rendering pipeline. With the algorithm-hardware co-design,

NeuRex greatly improves rendering performance over conventional

hardware with substantially smaller area and power budgets.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful comments.

This work was supported by the New Faculty Startup Fund from

Seoul National University and the Ministry of Science and ICT

under the ITRC support program (IITP-2023-RS-2022-00156295)

supervised by the IITP (Institute for Information&Communications

Technology Planning & Evaluation). The Institute of Engineering

Research at Seoul National University provided research facilities

for this work. Jaewoong Sim is the corresponding author.

REFERENCES
[1] 1994. The Stanford 3D Scanning Repository. https://graphics.stanford.edu/data/

3Dscanrep/
[2] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright

Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-Neuron-Free Deep
Neural Network Computing. In ACM/IEEE 43rd Annual International Symposium
on Computer Architecture (ISCA).

[3] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-
Layer CNN Accelerators. In 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[4] JEDEC Solid State Technology Association. 2014. JEDEC Standard JESD209-4:
Low Power Double Data Rate 4 (LPDDR4). JEDEC, Virginia, USA.

[5] JEDEC Solid State Technology Association. 2015. JEDEC Standard JESD235A:
High Bandwidth Memory (HBM) DRAM. JEDEC, Virginia, USA.

[6] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo
Martin-Brualla, and Pratul P. Srinivasan. 2021. Mip-NeRF: A Multiscale Repre-
sentation for Anti-Aliasing Neural Radiance Fields. In IEEE/CVF International
Conference on Computer Vision (ICCV).

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models Are Few-Shot Learners. In
Conference on Neural Information Processing Systems (NeurIPS).

[8] John Burgess. 2020. RTX on—The NVIDIA Turing GPU. IEEE Micro (2020).
[9] Karthik Chandrasekar, Christian Weis, Yonghui Li, Sven Goossens, Matthias

Jung, Omar Naji, Benny Akesson, Norbert Wehn, and Kees Goossens. 2012.
DRAMPower: Open-source DRAM power & Energy Estimation Tool. http://www.
drampower.info

[10] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:
Tensorial Radiance Fields. In European Conference on Computer Vision (ECCV).

[11] Yinbo Chen, Sifei Liu, and Xiaolong Wang. 2021. Learning Continuous Image
Representation with Local Implicit Image Function. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

[12] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao:
A Machine-Learning Supercomputer. In 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[13] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architecture
for Energy-Efficient Dataflow for Convolutional Neural Networks. In ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA).

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT).

[15] Yu Feng, Boyuan Tian, Tiancheng Xu, Paul Whatmough, and Yuhao Zhu.
2020. Mesorasi: Architecture Support for Point Cloud Analytics via Delayed-
Aggregation. In 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO).

[16] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
2018. A Configurable Cloud-Scale DNN Processor for Real-Time AI. In ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA).

[17] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields Without Neural Net-
works. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

[18] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien
P. C. Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS. In
IEEE/CVF International Conference on Computer Vision (ICCV).

[19] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijaykumar.
2019. SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks.
In 52nd Annual IEEE/ACM International Symposium onMicroarchitecture (MIRCO).

[20] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun
Jung, and Jae W. Lee. 2021. ELSA: Hardware-Software Co-Design for Efficient,
Lightweight Self-Attention Mechanism in Neural Networks. In ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA).

[21] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA).

[22] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both
Weights and Connections for Efficient Neural Networks. In Conference on Neural

NeuRex: A Case for Neural Rendering Acceleration ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Information Processing Systems (NeurIPS).
[23] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul

Debevec. 2021. Baking Neural Radiance Fields for Real-Time View Synthesis. In
IEEE/CVF International Conference on Computer Vision (ICCV).

[24] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-datacenter performance analysis of a
tensor processing unit. In ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA).

[25] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas Chandra, Utku
Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, Meng
Li, Bert Maher, Dheevatsa Mudigere, Maxim Naumov, Martin Schatz, Mikhail
Smelyanskiy, Xiaodong Wang, Brandon Reagen, Carole-Jean Wu, Mark Hemp-
stead, and Xuan Zhang. 2020. RecNMP: Accelerating Personalized Recommen-
dation with near-Memory Processing. In ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA).

[26] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast and
Extensible DRAM Simulator. IEEE Computer Architecture Letters (CAL) (2016).

[27] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and
Temples: Benchmarking Large-Scale Scene Reconstruction. ACM Transactions on
Graphics (SIGGRAPH) (2017).

[28] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. TensorDIMM: A Practical
Near-Memory Processing Architecture for Embeddings and Tensor Operations
in Deep Learning. In 52nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO).

[29] Lufei Liu, Wesley Chang, Francois Demoullin, Yuan Hsi Chou, Mohammadreza
Saed, David Pankratz, Tyler Nowicki, and Tor M. Aamodt. 2021. Intersection Pre-
diction for Accelerated GPU Ray Tracing. In 54th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO).

[30] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt.
2020. Neural Sparse Voxel Fields. In Conference on Neural Information Processing
Systems (NeurIPS).

[31] Yashuai Lü, Libo Huang, Li Shen, and Zhiying Wang. 2017. Unleashing the
Power of GPU for Physically-Based Rendering via Dynamic Ray Shuffling. In
50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[32] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro,
and Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural
Scene Representation. ACM Transactions on Graphics (SIGGRAPH) (2021).

[33] Yiqun Mei, Yuchen Fan, and Yuqian Zhou. 2021. Image Super-Resolution With
Non-Local Sparse Attention. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).

[34] Micron. 2016. Automotive LPDDR4/LPDDR4X SDRAM. Micron Technology, Inc,
Boise, USA.

[35] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Proceedings of the European Conference on Computer
Vision (ECCV).

[36] Duncan J.M Moss, Srivatsan Krishnan, Eriko Nurvitadhi, Piotr Ratuszniak, Chris
Johnson, Jaewoong Sim, Asit Mishra, Debbie Marr, Suchit Subhaschandra, and
Philip H.W. Leong. 2018. A Customizable Matrix Multiplication Framework
for the Intel HARPv2 Xeon+FPGA Platform: A Deep Learning Case Study. In
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA).

[37] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. In-
stant Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM
Transactions on Graphics (SIGGRAPH) (2022).

[38] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H. Mueller,
Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, and Markus Steinberger.
2021. DONeRF: Towards Real-Time Rendering of Compact Neural Radiance
Fields using Depth Oracle Networks. Computer Graphics Forum (EGSR) (2021).

[39] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. 2020.
Differentiable Volumetric Rendering: Learning Implicit 3D Representations with-
out 3D Supervision. In IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR).
[40] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh,

and Debbie Marr. 2016. Accelerating Binarized Neural Networks: Comparison of
FPGA, CPU, GPU, and ASIC. In International Conference on Field-Programmable
Technology (FPT).

[41] Eriko Nurvitadhi, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang,
Jason Ong Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit
Subhaschandra, and Guy Boudoukh. 2017. Can FPGAs Beat GPUs in Acceler-
ating Next-Generation Deep Neural Networks?. In ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA).

[42] NVIDIA. 2018. NVIDIA Xavier System-on-Chip, HotChips 30.
[43] NVIDIA. 2020. GeForce RTX 3070 Family. Retrieved April 10, 2023 from https:

//www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti/
[44] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya

Agrawal, Stephen W. Keckler, and William J. Dally. 2017. Fine-Grained
DRAM: Energy-Efficient DRAM for Extreme Bandwidth Systems. In 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[45] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An accelerator for compressed-sparse convo-
lutional neural networks. In ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA).

[46] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for
Shape Representation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

[47] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network
Accelerators. In ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA).

[48] C. Reiser, S. Peng, Y. Liao, and A. Geiger. 2021. KiloNeRF: Speeding up Neural Ra-
diance Fields with Thousands of Tiny MLPs. In IEEE/CVF International Conference
on Computer Vision (ICCV).

[49] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. 2005. Multi-Level Ray
Tracing Algorithm. ACM Transactions on Graphics (SIGGRAPH) (2005).

[50] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A Fast and Pro-
grammable Accelerator for Fully Homomorphic Encryption. In 54th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[51] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein. 2019. Scene Rep-
resentation Networks: Continuous 3D-Structure-Aware Neural Scene Represen-
tations. In Conference on Neural Information Processing Systems (NeurIPS).

[52] Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct Voxel Grid Optimiza-
tion: Super-fast Convergence for Radiance Fields Reconstruction. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

[53] Synopsys. 2023. Design Compiler - Synopsys. Retrieved April 10, 2023
from https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/
dc-ultra.html

[54] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[55] Ayush Tewari, Justus Thies, BenMildenhall, Pratul Srinivasan, Edgar Tretschk, Yi-
fanWang, Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen
Lombardi, Tomas Simon, Christian Theobalt, Matthias Niessner, Jonathan T.
Barron, Gordon Wetzstein, Michael Zollhoefer, and Vladislav Golyanik. 2021.
Advances in Neural Rendering. https://doi.org/10.48550/ARXIV.2111.05849

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In Conference on Neural Information Processing Systems (NeurIPS).

[57] Y. Yao, Z. Luo, S. Li, J. Zhang, Y. Ren, L. Zhou, T. Fang, and L. Quan. 2020.
BlendedMVS: A Large-Scale Dataset for Generalized Multi-View Stereo Networks.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[58] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa.
2021. PlenOctrees for Real-time Rendering of Neural Radiance Fields. In IEEE/CVF
International Conference on Computer Vision (ICCV).

[59] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. 2016. Cambricon-X: An accelerator for sparse
neural networks. In 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO).

[60] Han Zhao, Weihao Cui, Quan Chen, Jieru Zhao, Jingwen Leng, and Minyi Guo.
2021. Exploiting Intra-SM Parallelism in GPUs via Persistent and Elastic Blocks.
In IEEE 39th International Conference on Computer Design (ICCD).

