
Can FPGAs Beat GPUs in Accelerating

Next-Generation Deep Neural Networks?

Eriko Nurvitadhi1, Ganesh Venkatesh1, Jaewoong Sim1, Debbie Marr1,
Randy Huang2, Jason Gee Hock Ong2, Yeong Tat Liew2,

Krishnan Srivatsan3, Duncan Moss3, Suchit Subhaschandra3, Guy Boudoukh4

1
Accelerator Architecture Lab,

2
Programmable Solutions Group,

3
FPGA Product Team,

4
Computer Vision Group

Intel Corporation

ABSTRACT
Current-generation Deep Neural Networks (DNNs), such as
AlexNet and VGG, rely heavily on dense floating-point matrix
multiplication (GEMM), which maps well to GPUs (regular
parallelism, high TFLOP/s). Because of this, GPUs are widely
used for accelerating DNNs. Current FPGAs offer superior energy
efficiency (Ops/Watt), but they do not offer the performance of
today’s GPUs on DNNs. In this paper, we look at upcoming
FPGA technology advances, the rapid pace of innovation in DNN
algorithms, and consider whether future high-performance FPGAs
will outperform GPUs for next-generation DNNs.

The upcoming Intel® 14-nm StratixTM 10 FPGAs will have
thousands of hard floating-point units (DSPs) and on-chip RAMs
(M20K memory blocks). They will also have high bandwidth
memories (HBMs) and improved frequency (HyperFlex™ core
architecture). This combination of features brings FPGA raw
floating point performance within striking distance of GPUs.
Meanwhile, DNNs are quickly evolving. For example, recent
innovations that exploit sparsity (e.g., pruning) and compact data
types (e.g., 1-2 bit) result in major leaps in algorithmic efficiency.
However, these innovations introduce irregular parallelism on
custom data types, which are difficult for GPUs to handle but
would be a great fit for FPGA’s extreme customizability.

This paper evaluates a selection of emerging DNN algorithms on
two generations of Intel FPGAs (ArriaTM 10, StratixTM 10) against
the latest highest performance Titan X Pascal GPU. We created a
customizable DNN accelerator template for FPGAs and used it in
our evaluations. First, we study various GEMM operations for
next-generation DNNs. Our results show that Stratix 10 FPGA is
10%, 50%, and 5.4x better in performance (TOP/sec) than Titan X
Pascal GPU on GEMM operations for pruned, Int6, and binarized
DNNs, respectively. Then, we present a detailed case study on
accelerating Ternary ResNet which relies on sparse GEMM on 2-
bit weights (i.e., weights constrained to 0,+1,-1) and full-precision
neurons. The Ternary ResNet accuracy is within ~1% of the full-
precision ResNet which won the 2015 ImageNet competition. On
Ternary-ResNet, the Stratix 10 FPGA can deliver 60% better
performance over Titan X Pascal GPU, while being 2.3x better in

performance/watt. Our results indicate that FPGAs may become
the platform of choice for accelerating next-generation DNNs.

Keywords
Deep Learning, Accelerator, Intel Stratix 10 FPGA, GPU.

1. INTRODUCTION
The exponential growth of digital data such as images,

videos, and speech, from myriad sources (e.g., social media,
internet-of-things) is driving the need for analytics to extract
knowledge from the data. Data analytics often rely on machine
learning (ML) algorithms. Among ML algorithms, deep
convolutional neural networks (DNNs) offer state-of-the-art
accuracies for important image classification tasks, and therefore
are becoming widely adopted.

Mainstream current-generation DNNs (e.g., AlexNet, VGG)
rely heavily on dense matrix multiplication operations (GEMM)
on 32-bit floating-point data (FP32). Such operations are well-
suited for GPUs, which are known to do well on regular
parallelism and are equipped with many floating-point compute
units and high-bandwidth on-chip and off-chip memories. As
such, recent GPUs are becoming more widely used for
accelerating DNNs, since they can offer high performance (i.e.,
multi-TFLOP/s) for mainstream DNNs.

While FPGAs have provided superior energy efficiency
(Performance/Watt) than GPUs for DNNs, they have not been
known for offering top performance. However, FPGA
technologies are advancing rapidly. The upcoming Intel Stratix 10
FPGA [17] will offer more than 5000 hardened floating-point
units (DSPs), over 28MB of on-chip RAMs (M20Ks), integration
with high-bandwidth memories (up to 4x250GB/s/stack or 1TB/s),
and improved frequency from the new HyperFlex technology,
thereby leading to a peak 9.2 TFLOP/s in FP32 throughput. In
comparison, the latest Nvidia Titan X Pascal GPU offers 11
TFLOPs in FP32 throughput. This means that FPGA performance
may be just within striking distance.

Moreover, DNN algorithms are evolving rapidly. Recent
developments point toward next-generation DNNs that exploit
network sparsity [4,5,6] and use extremely compact data types
(e.g., 1bit, 2bit) [1,2,3,4,5]. These emerging DNNs offer orders of
magnitude algorithmic efficiency improvement over “classic”
DNNs that rely on dense GEMM on FP32 data type, but they
introduce irregular parallelism and custom data types, which are
difficult for GPUs to handle. In contrast, FPGAs are designed for
extreme customizability. FPGAs shine on irregular parallelism
and custom data types. An inflection point may be near!

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
FPGA’17, February 22-24, 2017, Monterey, CA, USA.
© 2017 ACM. ISBN 978-1-4503-4354-1/17/02…$15.00.

DOI: http://dx.doi.org/10.1145/3020078.3021740

The key question is: For next-generation DNNs, can FPGAs
beat GPUs in performance? This paper is the first to shed light on
the answer by offering the following contributions:

 First, we survey key trends in next-generation DNNs that
exploit sparsity and compact data types. We cover pruned
sparse networks [6], low N-bit networks [6,7], 1-bit binarized
networks [1,2,3], and 2-bit sparse ternary networks [4,5].

 Second, we develop a customizable DNN hardware
accelerator template for FPGA that can support various next-
generation DNNs. The template offers first-class hardware
support for exploiting sparse computation and custom data
types. It can be customized to produce optimized hardware
instances for FPGA for a user-given variant of DNN.

 Third, using the template, we evaluate various key matrix
multiplication operations for next-generation DNNs. Our
evaluation is done on the current- and next-generation of
FPGAs (Arria 10, Stratix 10) and the latest high-performance
Titan X Pascal GPU. We show that Stratix 10 FPGA is able
to offer 10%, 50%, and 5.4x better in performance (TOP/sec)
than Titan X Pascal GPU on GEMM operations for pruned,
Int6, and binarized DNNs, respectively. We also show that
both Arria 10 and Stratix 10 FPGAs offer compelling energy
efficiency (TOP/sec/watt) relative to Titan X GPU.

 Lastly, we conduct a case study on Ternary ResNet [5],
where the key operation is multiplication of two sparse
matrices. One matrix has FP32 values, and the other has
ternary 2-bit values (i.e., weights are constrained to 0,+1,-1).
The accuracy of Ternary ResNet [5] is within ~1% of the
best reported accuracy of the most recent 2015 ImageNet
competition winner (i.e., full-precision ResNet). For Ternary
ResNet, the Stratix 10 FPGA can deliver 60% better
performance than Titan X Pascal GPU, while being 2.3x
better in performance/watt.

The rest of the paper is organized as follows. Section 2
provides background on DNN, FPGA, and GPU trends. Section 3
discusses our customizable DNN hardware accelerator template,
which we use to derive FPGA implementation instances to
evaluate against the GPU. Section 4 compares various types of
GEMMs for next-generation DNNs. Section 5 presents a case
study on Ternary ResNet on FPGAs and GPUs. Section 6, 7, and
8 offers discussions, related work, and concluding remarks.

Figure 1. Machine learning for data analytics. The training
phase creates a model from known training data. The model is
then used during inference to make predictions on new data.

2. BACKGROUND
2.1 Deep Neural Networks Overview

Classification vs. Training. Many data analytics workloads
rely on machine learning (ML) algorithms. A typical ML setup for

data analytics consists of two phases, as illustrated in Figure 1.
First, the training phase iteratively works on a known set of data
samples (e.g., various images and its known categories in Figure
1) to create a model with predictive power. Then, the inference
phase uses the model to make predictions for newly seen data
samples (e.g., predicting a category of a newly seen image, in
Figure 1). Section 4 of this paper focuses on key matrix operations
used in both inference and training phases, while the case study
presented in Section 5 focuses on the inference phase.

Figure 2. An example neural network with 4 fully connected
layers (input I, hidden H1 and H2, output O). Inference does

only forward pass. Training iteratively does forward and
backward passes to update weights (W1, W2, W3).

Neural Networks Basics. As mentioned earlier, deep
convolutional neural network (DNN) is a class of ML algorithms
that are widely used because they offer state-of-the-art inference
accuracies. Neural networks can be formulated as graphs, where
nodes represent neurons and edges represent connections across
the neurons. Each neuron and edge is associated with a value.
Neuron values are often referred to as activation values, and edge
values as network weights. The graph is structured as layers of
neurons. Figure 2 illustrates a 4-layer network, with an input layer
and an output layer, and two hidden layers between them.

The neural network computation works by going through
each layer in the network. For a given layer, each neuron’s value
is calculated by multiplying and accumulating all the values of the
previous layer’s neurons with the corresponding edge weights.
Thus, the computation heavily relies on multiply-accumulate
operations. The DNN computation consists of forward and
backward passes, as illustrated in Figure 2. The forward pass takes
a sample at the input layer, goes through all hidden layers, and
produces a prediction at the output layer. For inference, only the
forward pass is needed to obtain a prediction for a given sample.
For training, the prediction error from the forward pass is then fed
back during the backward pass to update the network weights –
this is called the back-propagation algorithm. Training iteratively
does forward and backward passes to refine network weights until
the desired accuracy is achieved.

Figure 3. Fully connected layers can be formulated as matrix
multiplications. When there are zeros, the computation

becomes sparse matrix multiply. Though not illustrated here,
convolution layer can also be formulated as matrix multiply.

There are different types of DNN layers. A fully connected
(FC) layer connects all the neurons in one layer to all the neurons
in the next layer (as in Figure 3). A convolutional layer connects

only to groups of neighbor neurons. Activation and normalization
layers transform neuron values. And, pooling layers merge a
group of neuron values. Modern DNNs typically have multiple
sets of each type of layers. Each one has a convolutional layer,
followed by some combination of activation (i.e., ReLU) layers,
batch normalization layers, and pooling layers (to reduce the size
of the computation for the later layer and to avoid overfitting). FC
layers were used in earlier networks (e.g., AlexNet, VGG). Recent
networks (e.g., ResNet) use only very few or no FC layers. For
modern DNNs, most computation is on the convolution layers
(e.g., [8] reports ~90% time spent on convolutions)

Network Layers as Matrix Multiply. The fully-connected
and convolutional layers can be formulated as matrix
multiplication. In practice, such formulation may make it more
amenable for high-performance implementations (e.g., by using
an optimized math library, such as Intel MKL). Figure 3(a) shows
an illustration, where a 3-neuron input layer (I) and a 2-neuron
output layer (O) are formulated as dense vectors, and the weights
(W) are formulated as a 2x3 dense matrix. The computation
multiplies the vector of input neurons with the weight matrix.

2.2 Trends in Deep Neural Networks
Trend 1: Deeper networks lead to more accuracy, but

these large models are becoming intractable to process. In
recent years, many have shown that deeper neural networks can
deliver greatly improved inference accuracies. Table 1 shows the
winners of the well-known ILSVRC challenge on ImageNet
dataset for the past several years. As shown in the table, the
accuracy has increased tremendously since 2012, with a 4.5x
reduction in the top-5 error rate (16.4 to 3.5%), but the number of
layers has also gone up 19x (8 layers in AlexNet to 152 layers in
ResNet). Deeper networks require more computation to perform.

Table 1. Recent DNNs are deeper and more accurate.
Furthermore, larger model makes processing intractable,
leading to recent focus on more efficient DNN algorithms.

Network
Top-5

Error %
Depth

(#layers)
Model

Size (MB)

AlexNet (ILSVRC’12) 15.3 8 240

VGG (ILSVRC’14) 7.3 19 500

GoogLeNet
(ILSVRC’14)

6.7 22 24

ResNet (ILSVRC’15) 3.57 152 240

Along with deeper networks, early networks were greatly
increasing the number of parameters, consequently leading to
larger model sizes. In 2012, AlexNet had 60M parameters
(240MB, 4B/parameter), while in 2014 VGG had a ~2x larger
model. The increase in model size significantly increases the
computational requirements, memory bandwidth, and storage
needed to move and store the model. Therefore, more recent
DNNs necessarily designed the networks to be more efficient. For
example, GoogLeNet uses a composition of varying size filters, to
allow for deeper network, while having a manageable model size.
ResNet utilizes a “shortcut” connection to skip layers, enabling
sharing of weights across more layers, resulting in a very deep
network with a model size smaller than VGG.

Trend 2: Improving efficiency by using more compact
data types. Another avenue for improving DNN efficiency is to
use more compact data types. Many researchers have shown (e.g.,
[6,7,10,11]) that it is possible to represent data in much less than
32-bits, demonstrating the use of 8-4 bits (depending on the

network) leads to only a small reduction in accuracy compared to
full precision. Data types which are more compact than 32-bit
single precision floating point are becoming the new norm. As an
evidence of this, the latest GPUs are providing native support for
FP16 and Int8 data types. Moreover, popular DNN frameworks,
such as TensorFlow, provide support for such data types as well.

Interestingly, very recently, there are many active research
efforts that study extremely compact data representation. In
particular, research on binarized neural networks (BNNs) [1,2,3]
investigates the use of 1-bit data types, by constraining values to
+1 or -1. The most efficient variant of BNNs proposes using 1-bit
for both neurons as well as weights. The brilliance of doing this is
that not only is the storage size and bandwidth demand
dramatically lower (32x smaller than FP32), but the computation
of 1-bit “multiply-accumulate” can be done without
multiplications or additions! The computation boils down to an
xnor followed by a bitcounting operation. We provide details on
how to do this in Section 3.

BNNs have comparable accuracies to state-of-the-art full
precision networks for small datasets (e.g., CIFAR10). However,
the BNN accuracy on larger datasets (e.g. ImageNet) has not yet
been realized. Nevertheless, BNN research is very active and
rapidly advancing. For example, a BNN variant called BinaryNet
[2] demonstrated a near state-of-the-art accuracy on CIFAR10 in
early 2016, but was not evaluated on ImageNet. In August of
2016, a new work [3] reported evaluations of ImageNet using
BinaryNet and proposed a new variant of BNN called XNOR-net.
The work shows that BinaryNet achieves only half the accuracy of
AlexNet on ImageNet, but XNOR-net gets within 22% of
AlexNet accuracy. Given the rapid rate of advances in this
research, even better accuracy may be achieved in the near future.

Ternary neural networks (TNNs) [4,5] are another class of
network that proposes extremely low bit-width. TNNs constrained
weight values to 0, +1, or -1, which can be represented in 2 bits.
Recently [5], TNNs have been shown to provide comparable
accuracy on ImageNet, within 1% of full-precision ResNet-152,
which is the latest ILSVRC winner. However, such TNNs still
rely on FP32 neuron values. Thus, the multiply-accumulate
computations are done between FP32 neurons and 2-bit weights.
While this makes computation more efficient (detailed in Section
3), the efficiency gain is not as great as that of BNNs.

Trend 3: Improving efficiency by taking advantage of
sparsity. There are many studies on exploiting sparsity (i.e., the
presence of zeros) in DNN neurons and weights. In recent years,
most networks use Rectified Linear Unit (ReLU) as the activation
function, which zeroes out negative neuron values. It has been
reported [8] that ~50% of neuron values in popular networks (e.g.,
AlexNet, VGG) are zeros. Computation on such zero-valued
neurons is unnecessary. As illustrated in Figure 3(b), in the
presence of zero values, the computation becomes sparse matrix
multiplication, which requires fewer operations than dense matrix.

Furthermore, there are also research efforts to exploit
sparsity on the weight values [6]. Such research show that it is
possible to make network weights sparse while maintaining
accuracy, by zeroing out (“pruning”) weights that are deemed to
be not important. The recent result in [6] shows that such pruning
on AlexNet and VGG-16 results in up to 91% and 96% sparsity
for certain layers, without sacrificing accuracy. In our own
experiments, based on the approach in [6], we are able to achieve
~85% sparsity for AlexNet convolutional layers, and even more in
fully connected layers, for ImageNet dataset, with only ~1%

degradation in accuracy. We were also able to prune GoogleNet
with only ~0.2% drop in accuracy, while achieving ~65% sparsity
for all convolution layers, except for the first layer.

Another method to sparsify weights is by ternarization. As
mentioned earlier, TNNs constrain weights to 0, +1, or -1. Thus, it
introduces many zeros to the weights. A Ternarized ResNet that
delivers comparable accuracy to full-precision ResNet introduces
~50% sparsity to the weights.

Other Trends. DNN research is rapidly evolving and there
are trends not covered in this paper. We offer discussions on these
in Section 6. Nevertheless, we believe that sparsity exploitation
and the use of extremely compact data types are two major trends
likely to become the norm in the next-generation DNNs.
Therefore, we focus on these in the remainder of the paper.

2.3 GPU vs. FPGA Trends
GPUs are known to do well on data parallel computation that

exhibits regular parallelism and demands high floating point
compute throughput. Across generations, GPUs offer increased
FLOP/s, by incorporating more floating-point units, on-chip
RAMs, and higher memory bandwidth. For example, the latest
Titan X Pascal offers peak 11 TFLOP/s of 32-bit floating-point
throughput, a noticeable improvement from the previous
generation Titan X Maxwell that offered 7 TFLOP/s peak
throughput. However, GPUs can face challenges from issues, such
as divergence, for computation that exhibits irregular parallelism.
Further, GPUs support only a fixed set of native data types. So,
other custom-defined data types may not be handled efficiently.
These challenges may lead to underutilization of hardware
resources and unsatisfactory achieved performance.

Meanwhile, FPGAs have advanced significantly in recent
years. There are several FPGA trends to consider. First, there are
much more on-chip RAMs on next-generation FPGAs. For
example, Stratix 10 [17] offers up to ~28 MBs worth of on-chip
RAMs (M20Ks). Second, frequency can improve dramatically,
enabled by technologies such as HyperFlex. Third, there are many
more hard DSPs available. Fourth, off-chip bandwidth will also
increase, with the integration of HBM memory technologies.
Fifth, these next-generation FPGAs use more advanced process
technology (e.g., Stratix 10 uses 14nm Intel technology). Overall,
it is expected that Intel Stratix 10 can offer up to 9.2 TFLOP/s of
32bit floating-point performance. This brings FPGAs closer in
raw performance to state-of-the-art GPUs. Unlike GPUs, the
FPGA fabric architecture was made with extreme customizability
in mind, even down to bit-levels. Hence, FPGAs have the
opportunity to do increasingly well on the next-generation DNNs
as they become more irregular and use custom data types.

In addition, the software ecosystem for FPGAs is advancing
as well. High-level FPGA programming tools (e.g., Altera
OpenCL SDK) are now commercially available. They allow
programming FPGAs at a higher level of abstraction than RTL
(e.g., Verilog). These tools make FPGAs more accessible to
developers who are not hardware experts. FPGAs are integrating
into mainstream compute systems, e.g., alongside a server CPU in
an upcoming Intel Xeon®+FPGA offering [12], inside a network
card, or as a “GPU form factor” PCIe card. These trends can
speed up FPGA adoption into the mainstream systems. Indeed,
there are ongoing efforts from leading technology companies to
incorporate FPGAs into datacenters (e.g., [12,13]).

3. CUSTOMIZABLE HARDWARE
ARCHITECTURE TEMPLATE FOR DNNS

We have developed customizable hardware architecture
“template” for DNNs, which takes into account the emerging
DNN trends mentioned in Section 2 (i.e., sparsity, compact data
types). The template can be configured to derive hardware
instances (i.e., RTL implementation) for a given user-specified
DNN variant. Such instances can then be mapped to FPGA (or
ASIC). We use this template to facilitate our evaluations of next-
generation DNNs on FPGAs and to compare them against GPUs,
which we will discuss in the next two sections. Meanwhile, we
describe our customizable DNN hardware template in this section.

Figure 4. Customizable hardware architecture template for
DNNs. (a) shows top-level design. (b) and (c) show variants of
GEMM unit supported by our template. (d) and (f) show PE

designs for handling dense and sparse data. (e) shows
optimization for binarized GEMM, where multiply-

accumulate operation is done using xnor and bitcounting.

3.1 Overview
The top-level design of our template is shown in Figure 4(a).

The design consists of Memory and On-chip data management
units (MDM, ODM), GEMM Unit to compute convolutional and
fully connected layers, and Misc Layers Unit (MLU) to compute
the other DNN layer types (ReLU, Batch Norm, Pool).

The design works as follows. First, weights and input
neurons are loaded into on-chip buffers in ODM from memory.
The convolution and fully-connected layers are computed by
dynamically flattening the weights and input feature maps
(neurons) onto blocked matrix operations, as in [10]. The GEMM
Unit performs such matrix operations and outputs the result to
MLU, which then performs the ReLu/BatchNorm/Pooling layers,
as dictated by the desired DNN configuration. The output goes
into the on-chip buffer in ODM, to be read by the next
convolution/FC layer. If there is not enough buffer in ODM, the
output is spilled out to memory by MDM.

The GEMM Unit consists of multiple processing elements
(PEs). The GEMM Unit is customizable to use systolic-based [14]
or broadcast-based [15] architecture across PEs, as shown in
Figures 4(b) and 4(c). PE is customizable to be able to perform
one or more multiply-accumulate operations.

In overall, the template is customizable to use various
GEMM and PE architectures (systolic/broadcast; sparse/dense)
and data types (1bit/2bit/Nbit/FP), as well as the typical sizing
parameters (e.g., number of PEs, GEMM units, buffer sizes, etc.).

3.2 Support for Emerging DNNs
Our architecture template incorporates features to exploit

sparsity and to handle compact data types, which are needed by
emerging DNNs. We describe these features below.

3.2.1 Support for N-bit data type
FPGAs have been known to be extremely flexible to handle

various data types. Many prior DNN works (e.g., [6,7,10,11])
have shown promising results implementing customized N-bit
data. Our architecture template can also support customization to
N-bit data. PEs can be customized to handle varying width of dot
product calculations based on data type width. Accordingly, the
data management units (ODM, MDM) can be customized to
handle packing/unpacking of the desired N-bit data types.

3.2.2 Support for Sparse Pruned DNNs
There are many existing studies on processing sparse

matrices (e.g., in HPC applications). However, such studies
typically use matrices that are extremely sparse (i.e., 1% or less
non-zeros). We observe that the sparsity in DNNs is not as
extreme (i.e., ~5-50% non-zeros). Therefore, instead of utilizing a
sparse matrix format (e.g., CSR), we opted to use a dense format,
but dynamically checked/tracked zeros and skipped zero
computation (i.e., similar to the approach from [8]). Specifically,
prior to feeding data to GEMM Unit, on-chip data manager
checks for zero values and includes metadata (index or bitvector)
to identify the locations of the zeros in the block of data providing
to the GEMM unit. Each processing element (PE) inside the
GEMM unit will read a set of matrix elements along with the
metadata. It will then schedule computation based on information
in the metadata. Those zero elements are not scheduled onto the
multiply-accumulate compute units inside the PE, therefore
reducing number of cycles needed to complete the matrix
operations and improving overall performance. The design of the
PE to support sparsity is shown in Figure 4(f). In contrast, the PE
design for regular dense computation is shown in Figure 4(d).

Figure 5. Binarized Matrix Multiplication. By representing -1
as 0, standard multiply and add operations (a) can be replaced

by xnor and bit counting operations (b), where bit counting
can be done using a lookup table (c).

3.2.3 Support for Binarized DNNs
In binarized DNNs (BNNs), both weight and neuron values

are constrained to +1 or -1. Therefore, the key operation in BNNs
is 1-bit matrix multiplication. Figure 5(a) shows an example of a
1-bit matrix multiply. To improve computation efficiency -1 can
be represented as zeros, and computation can be done using an
xnor followed by a bit counting operation (as in Figure 5(b)). The
bit counting itself can further be implemented using a lookup
table, as shown in Figure 5(c). Our DNN architecture template
provides a customization option for a PE that performs N-bit dot
products using the aforesaid approach, as depicted in Figure 4(e).

3.2.4 Support for Ternarized DNNs
Lastly, the support for Ternarized DNNs (TNNs) in our

architecture is as follows. In TNNs, weights are constrained to 0,
+1, or -1, but neurons are still using N-bit precision. In this case,
we represent ternary weights using 2 bits, with 1 bit indicating
whether the value is 0 and another bit indicating whether the value
is +1 or -1 (as in BNNs). The PE uses the 1-bit zero indicator in
the same way as the metadata bits used to exploit sparsity in
Section 3.2.2. As such, whenever there is an operation against a
zero weight, the operation will be skipped and not be scheduled
onto the PE’s compute unit(s). If the weight is either +1 or -1,
instead of performing multiplication against N-bit precision
neuron values, we simplify the computation by negating the sign
of the neuron value (i.e., a sign bit flip if neuron is floating-point,
or negation if it is fixed point). As such, PE for ternary
computation does not require a multiplication unit.

4. EVALUATION OF MATRIX MULTIPLY
FOR NEXT-GENERATION DNNS

Matrix multiplication is a key operation in DNNs. It is
important to have a thorough understanding of the achievable
peak performance of this key operation on the platforms studied.
For this reason, we evaluate matrix multiplication on a variety of
matrix and data types. We selected dense and sparse matrices, 32-
bit floating point data types vs. narrow bit-width data types, and
even an extremely compact binarized 1-bit data type.

Table 2. FPGAs and GPU under study. Based on [16,17,18]

Type
Arria 10 1150

FPGA
Stratix 10 2800

FPGA
TitanX Pascal

GPU
Peak FP32
TFLOPs

1.36 9.2 11

On-chip
RAMs

6.6 MB
(M20Ks)

28.6 MB
(M20Ks)

13.5 MB
(RF, SM, L2)

Memory BW
Assume same

as Titan X
Assume same as

Titan X
480 GB/s

4.1 Methodology
Since we would like to understand the top possible

performance achievable by FPGAs and GPUs for the types of
matrix multiplications under study, we allow freely choosing
matrix sizes that provide the best performance for the target
platform. This ended up being in the range of dimensions of 2K-
4K. We also chose amenable batch sizes (i.e., number of
independent matrix multiplications), since batching is a common
practice when running DNNs on GPUs to maximize throughput.

The specific FPGAs and GPU studied are shown in Table 2.
We include two generations of FPGAs (Arria 10 and Stratix 10)
and compare them with the Titan X Pascal GPU, the latest and
highest performance GPU available for purchase at this paper’s
submission deadline (September of 2016).

To make a fair FPGA comparison to the GPU, we decided to
allow the FPGA to have the same memory capacity and
bandwidth as the GPU. Although readily-available FPGA cards
have less capable memory system than the GPU card, integrated
HBM stacks in the upcoming Stratix 10 will allow FPGA
packages and cards to have the equivalent memory bandwidth and
capacity as the GPU cards. We want to evaluate the potential
fundamental advantages of FPGA vs. GPU rather than penalizing
our FPGA study with memory limitations that can be addressed
with packaging and card-level solutions.

For our FPGA evaluation, we derived RTL instances from
our DNN hardware template, with customizations selected to
optimize for the matrix operations under study. Then, we use
Altera QuartusTM software, EPE tool [19], analytical modeling,
and simulations to estimate performance and power. For Stratix
10, which has been announced, but not yet available, we use
Quartus Early Beta release. Note that its quality is not necessarily
reflective of future more mature releases of Quartus for Stratix 10.

For our GPU evaluation, we conduct real system
measurements on the Nvidia Titan X Pascal card. We use nvprof
to collect performance and power numbers.

4.2 “Classic” DNNs
Current mainstream (i.e., “classic”) DNNs, such as AlexNet,

VGG, Googlenet, ResNet, etc., typically rely on dense matrix
multiplication on single-precision floating point numbers (FP32).

Figure 6. Matrix multiplication results for “Classic” DNNs. It

operates on dense matrices with FP32 data type

For GPU, we measured the FP32 dense matrix multiplication
performance using the cuBLAS library in the Nvidia CUDA
Toolkit 8.0 RC. Most of the instructions in the cuBLAS SGEMM
implementation are FMAs, leading to high compute efficiency.
The peak theoretical performance of Titan X Pascal is 11
TFLOPs, and we achieved 10.88 TFLOPs with the cuBLAS
matrix multiplication library call.

FP32 dense matrix multiplication is a sweet spot for GPUs,
not FPGAs, so we did not create an optimized FPGA
implementation for this. We present comparison of peak numbers
based on the FPGA and GPU datasheets instead (in Figure 6).

As Figure 6(a) shows, Stratix 10 with its far greater number
of DSPs will offer much improved FP32 performance compared
to the Arria 10, bringing the Stratix 10 within striking distance to
Titan X performance. However, the peak FP32 TOP/s still lags
behind the GPU. It could be possible for FPGAs to win in
performance/Watt. Figure 6(b) shows that the Stratix 10 can be up
to ~40% better than Titan X if we assume the FPGA peak TOP/s.

4.3 Sparse (Pruned) DNNs
As described in Section 2, next-generation DNNs are likely

to operate on sparse matrices. Pruning [6] is a recent, popular

technique to make DNN weights sparse without little or no loss in
accuracy. For our study, we replicated the pruning results for
AlexNet from [6] using our in-house software reference. We also
ran further experiments to fine-tune (e.g., pruning threshold,
number of re-training iterations) and optimize our results. We are
able to achieve on average ~85% sparsity in the convolution
layers of AlexNet with less than a 1% degradation in accuracy
(fully connected layers are even more sparse). Hence, our
evaluation uses matrices with 85% sparsity (i.e., 15% non-zeros).

4.3.1 Sparse Matrix Multiply on GPU
Evaluating sparse matrix multiply for pruned DNNs can be

challenging for GPUs. Modern GPU architectures employ what is
known as a single-instruction multiple-thread (SIMT) execution
model, in which multiple threads execute the same sequence of
instructions, on different data, in a lock step fashion. As such,
although a few threads may skip zero computation, the
corresponding SIMT lanes simply remain idle while the threads
on the other SIMT lanes perform non-zero computation. In
addition, checking for zeros in the matrices adds extra instructions
to the execution kernel, which reduces compute efficiency.

Another approach is to use sparse linear algebra libraries for
zero-skipping. However, existing GPU libraries such as
cuSPARSE are targeted for traditional sparse matrix operations
that perform on extremely sparse matrices with less than 1% of
zeros (e.g., well-known in the High-Performance Computing
domain). Also, for sparse matrix multiplication, the input matrices
need to be converted to one of the standard sparse matrix formats
such as compressed sparse row (CSR) or compressed sparse
column (CSC). Since the matrices in DNNs are not extremely
sparse (i.e., ~5%-50% sparsity), using these sparse libraries leads
to large overhead.

To address this problem, we wrote our own sparse matrix
multiply implementation. Our implementation uses dense matrix
format, but it checks and skips zeros dynamically in a similar way
as our FPGA implementation. Our implementation is a
modification on top of an optimized open-source MAGMA [29]
dense matrix multiply library. While we would have liked to
implement our algorithm on top of cuBLAS, the code for cuBLAS
is not open-source. The MAGMA library is one of the most
optimized open-source GPU libraries that we could find.

Figure 7. GPU performance on sparse (zero-skipping) GEMM
versus dense GEMM for various sparsity levels. Zero-skipping

sparse GEMM performs worse than normal dense GEMM.

Figure 7 shows the comparison between the baseline
SGEMM (without zero-skipping) and SGEMM with zero-
skipping for varying sparsity levels. As explained before,
dynamically checking zero values degrades performance as it
needs to execute more non-useful instructions, without increasing
SIMT utilization. Across the different sparsity percentages, zero-
skipping kernel performs worse than without zero-skipping.
Hence, for comparison against FPGA, we use GPU performance
on dense matrix multiplication. This is because the GPU
performance is far better on dense matrix, computing all the

0

5000

10000

0 25 50 75

G
FL

O
P

s

Sparsity (%)

Baseline Zero-Skipping

multiplications, including the zeros. Specifically, we use the
cuBLAS library in the Nvidia CUDA Toolkit 8.0 RC.

Figure 8. Matrix multiplication results for DNNs with
pruning. It operates on sparse matrices with FP32 data type.
We use 85% sparsity, based on pruned AlexNet experiments.

For GPU, we report achieved performance on FP32 dense
matrix multiply, since we found that sparse matrix

multiplication lead to GPU performance degradation.

4.3.2 Sparse Matrix Multiply on FPGA
For FPGA, we use the design described in Section 3.2.2.

Since on FPGA we can detect and skip zero computation in a fine
grained manner, at 85% sparsity we observe ~4x speedups in
cycle count, as our GEMM Unit is able to skip many zeros.

For Stratix 10, we made conservative, moderate, and
aggressive performance projections. The conservative estimate is
based on mapping and scaling up our GEMM implementation for
Arria 10 directly to Stratix 10 without doing any optimization for
HyperFlex to achieve higher frequency. Hence, the conservative
estimate uses 300MHz frequency, matching the Arria 10 design.
The moderate and aggressive projections anticipate frequency
boosts from HyperFlex to 500MHz and 700MHz, respectively.

4.3.3 FPGA vs. GPU
The performance and performance/watt for FPGAs and GPU

under study is shown in Figure 8. As shown in Figure 8(a), even
the conservative 300 MHz estimate for Stratix 10 is only ~34%
worse in performance than GPU. The moderate estimate using
500 MHz brings Stratix 10 performance to ~10% better than GPU,
and the aggressive estimate improves it even further.

In terms of performance/watt, Figure 8(b) shows that FPGAs
offer more compelling results than GPU across the board. Arria
10 offers 16% better performance/watt over GPU, with Stratix 10
offering even further improvements.

Figure 9. Matrix multiplication results for DNNs with
compact data types. It operates on dense matrices. We use 6-
bit (Int6) data type for FPGA. For GPU, which does not have

native support for Int6, we use theoretical peak Int8 GPU
performance for comparison.

4.4 Compact Narrow-Bitwidth DNNs
As described in Section 2, there is significant prior work in

quantizing data to reduce computation requirements and bit-
widths to values smaller than 32-bit floating point. While 8-bit or
larger data types were used in the past DNN proposals, there are
trends towards even smaller sub-8-bit data types [6,7]. Here, we
evaluate dense matrix multiplication using the Int6 data type.

We use FPGA implementation based on systolic GEMM
(shown in Figure 4(b)) that is well optimized for frequency. It can
achieve 440MHz for Arria 10 and 920MHz in Stratix 10. For
GPU, we use theoretical peak Int8 performance for Titan X, since
GPU does not have native support for Int6 computations.

Our evaluation results are shown in Figure 9. As Figure 9(a)
shows, Stratix 10 Int6 performance is more than 50% better than
the Titan X theoretical peak Int8 performance (Titan X Int6
performance is expected to not be better than Int8). As Figure 9(b)
shows, performance/watt of FPGA is either comparable (Arria 10)
or more than 2x better (Stratix 10) than Titan X GPU.

4.5 Binarized DNNs
Recent “binarized” DNNs have proposed using extremely

compact 1bit data types. As detailed earlier, 1bit matrix
multiplications in binarized DNNs can be done more optimally
using xnor and bitcounting operations.

For GPU evaluation, we use a binary matrix multiply kernel
(xnor_gemm) from BinaryNet [2], which is based on the blocked
version of matrix multiply in the CUDA Programming Guide. In
the xnor_gemm implementation, instead of performing FMA
operations for matrix multiply, each CUDA thread performs xnor
and population count operations to compute one element of the
resulting matrix. The population count operation is supported in
Nvidia GPUs via __popc() (for 32-bit) and __popcll() (for 64-bit)
intrinsic functions. When these intrinsics are used in the CUDA
kernel, the CUDA compiler maps __popc() to a single instruction
and __popcll() to a few instructions.

On Titan X Pascal, 32 32-bit population count operations can
be issued every cycle per Streaming Multiprocessor (SM), which
leads to 1024 “binary ops” per cycle per SM. As Titan X can issue
up to 128 FP32 FMA instructions every cycle per SM, the peak
throughput of “binary ops” over FP32 operations is 4x. In our
Titan X Pascal, we achieve 45.6 TOPs for binary GEMM
performance.

For FPGA, we use systolic array GEMM unit with the PE for
binarized DNNs, which we described earlier in Section 3.2.3. Our
PE is configured to do 256-wide binary dot product operations.
We synthesized our implementation to Arria 10 and Stratix 10.
For validation, we also deployed and ran the design on an Arria
10 development system.

Figure 10. Matrix multiplication results for binarized DNNs.
It operates on dense matrices with 1bit data types. Multiply

and add operations are replaced with xnor and bitcount.

Our evaluation results are shown in Figure 10. Stratix 10 can
deliver 3x (conservative) to 12x (aggressive) better performance
than achieved performance on Titan X GPU, and 70%
(conservative) and over 6x (aggressive) than theoretical
performance of Titan X. Meanwhile, Arria 10 can deliver 25%
better performance than achieved Titan X GPU performance. In
terms of performance/watt, the Arria 10 and Stratix 10 can deliver
3x to over 10x better energy efficiency relative to Titan X.

5. TERNARY RESNET CASE STUDY
In the previous section, we evaluated key operations in

various emerging DNNs. In this section, we zoom in on a specific
DNN. In particular, we report a case study on accelerating
Ternary version of the state-of-the-art ResNet [5].

5.1 Ternary ResNet Overview
Ternary DNNs (i.e., Ternary Weight Networks) [4,5] have

recently proposed constraining neural network weights to +1, 0, or
-1, allowing for weights to be represented with just 2 bits, while
simultaneously introducing more sparsity to these weights.
Neurons are still represented using full precision (FP32). The
reported ImageNet accuracy results on Ternary DNNs have been
very compelling. The earlier paper [4] in May 2016 reported only
1.8% top-5 accuracy degradation on Ternary ResNet-18 relative
to full precision ResNet-18 (i.e., 86.2% Ternary vs. 88% full
precision accuracies). The very recent work [5] in September
2016 reports only 0.64% accuracy degradation for ResNet-152
(i.e., 93.2% ternary vs. 93.84% full precision). This work also
reports accuracy for ternary ResNet-50, which is within 1%
accuracy of full precision ResNet-50. We focus on ResNet-50
here, since its accuracy is close to ResNet-152 (within ~1.2%), but
requires much less computation.

Figure 11. Sparsity of Ternary ResNet-50. The x-axis shows
the different layers of ResNet-50. The y-axis shows

percentages of zeros for each layer. Sparsity results for the
ternary weights and runtime neuron values are provided.

Figure 12. FPGA accelerator speedups from exploiting
sparsity for each Ternary ResNet-50 layer. E.g., 1.5 means

that enabling sparse support to skip zeros leads to 1.5x faster
run (in cycle count) over normal dense processing.

5.2 Software Reference and Sparsity Study
Our software reference is based on the work in [5], which is

built on top of the Torch framework for ResNet [20]. We ran our

own experiments on ImageNet dataset with Ternary ResNet.
Indeed, we were able to obtain accuracies mentioned earlier.

First, to understand the opportunity for sparsity exploitation,
we collected average sparsity data for the resulting weights from
training with Ternary ResNet-50. Since ResNet uses ReLU as the
activation function, we also report runtime sparsity at the input
neuron values. Figure 11 shows the results.

As Figure 11 shows, the sparsity varies layer by layer. On a
weighted average across the layers, the weights are 51% sparse
and the neurons are 60% sparse. This means, that in the upper
bound, there can be 70-80% overall sparsity across both the
weights and neurons. In an ideal case, if it is possible to avoid the
70-80% unnecessary zero computations with perfect efficiency,
the upper bounds for speedups are 3.3x-5x. While this is
promising, in practice the actual speedups depend on whether the
compute platform can avoid these zero computations efficiently.

5.3 FPGA Evaluation
We used the hardware template detailed in Section 3 and

considered several possible instances of RTL implementations for
Ternary ResNet-50. In particular, we enabled customizations for
ternary DNNs discussed in Section 3.2.4.

First, we customized for 2bit ternary data format, and
replaced multiplication with a sign bit manipulation. Thus, our PE
only contains a floating-point accumulator. Nevertheless, a single
Stratix 10 DSP block contains an FP32 multiplier and an FP32
adder. Even though we are not using the multiplier, we still have
to use an entire DSP for our accumulator, so we do not gain any
DSP savings in this case. We do obtain ALM and M20K savings
from having very compact 2-bit ternary data representation.

Second, we evaluated different configurations for zero
skipping support. Generally, there is a tradeoff between the
aggressiveness of our sparse data scheduler to skip zero
computations and the FPGA resources needed and frequency. A
more aggressive sparse scheduler can look further ahead to a
larger set of weights and/or neurons, and identify and skip larger
portions of zeros dynamically. However, it costs more resources
and may impact frequency if it introduces data dependencies.

For this study, we chose a simper design more amenable to
frequency optimizations. Specifically, we opted for a less
aggressive but simpler sparse scheduler, at the expense of less
opportunity to skip zero computations. Furthermore, instead of
having the sparse scheduler skip zeros on both neurons and
weights, we chose to skip only zero neurons, as they use wider 32-
bit data type and sparser than the weights. Zero skipping only on
neurons lets us use only one of the “Sparse Mgt” unit outside of
the GEMM unit (i.e., inside “ODM” in Figure 4(a)) and to
simplify “zero-skip scheduler” inside each PE. Based on ResNet-
50 layer dimensions, we customize our DNN accelerator with
GEMM units with 4x8 PEs and 8 FMA units/PE.

Figure 12 shows our simulation results. We get only ~2x
reduction in cycle count from skipping zeros, even though as
stated earlier the upper bounds for exploiting sparsity are 3.3x-5x
speedups. More comprehensive design exploration is needed to
find an optimal design point. We leave this for a future study.

Because we exploit sparsity less aggressively, we ended up
with a simpler more regular design that is amenable to frequency
optimizations. The design runs at 450 MHz, even without
explicitly optimizing for HyperFlex yet. Due to time constraints,
we are not yet able to fully optimize our design. We are also using

Quartus Early Beta release for Stratix 10. Even though this is the
latest version available to us at present, it may or may not reflect
the synthesis result of more mature future releases of Quartus for
Stratix 10. Due to this, we made projections with conservative,
moderate, and aggressive optimization targets. Our conservative
estimate targets 450MHz, which we currently already achieved
without explicit optimizations for HyperFlex. HyperFlex has been
reported to enable much higher frequency (e.g., 896MHz in 400G
Ethernet CRC assembly [22]), so we use 600MHz and 750MHz as
our moderate and aggressive projections.

Figure 13. Ternary ResNet-50 results for ImageNet problem
size, on Titan X GPU and Stratix 10 FPGA. For Stratix 10, we
provide conservative, moderate, and aggressive estimates. For

GPU, we provide the best achieved performance on Torch
among the various settings we experimented with. Our GPU
result is better than existing performance number [20,21].

5.4 GPU Evaluation
We ran Torch for ImageNet and Ternary ResNet-50 on a

Titan X Pascal GPU to collect performance numbers. We tried
multiple batch sizes, and found that batch of 64 gives the best
performance. We used cuDNN 5 with the most aggressive
performance setting. cuDNN not only supports highly optimized
matrix operations as in cuBLAS, but it also supports many other
optimizations, including mathematical transforms such as
Winograd [23]. cuDNN chooses the best approach to compute the
DNN workload given to it. Since our FPGA does not currently
support all the optimizations in cuDNN (including Winograd), we
believe that we are allowing the GPU to do the best it can do
given its current software ecosystem. This includes using
algorithm/mathematical optimizations that our FPGA design does
not currently support.

To obtain an aggregated performance number, we collected
execution times for many samples. We excluded samples that run
much slower than others since they are not compute bound (i.e.,
they have non-trivial data access time). We average 200 compute-
bound samples to get our GPU result. Overall, we found that the
achieved Ternary ResNet performance is 6.6 TFLOP/s on
average, much less than the Titan X theoretical peak of 11
TFLOP/s.

We sanity checked our result against other ResNet GPU
performance numbers we could find [20,21]. [21] reported
execution time for ResNet-50 using the same Torch framework
we use, on a Titan X Pascal. Our achieved performance (TOP/sec)
is ~3x better than what was reported there. We notice that [21]
used batch 16 and did not use cuDNN, which may explain the
performance gap. There is also a ResNet-50 execution time
reported in [20], but it was for a Titan X Maxwell. We scaled their

number up to Pascal by accounting for increased performance
(i.e., 11 TFLOP/s peak in Titan X Pascal vs 7 TFLOP/s Titan X
Maxwell). Our achieved performance is ~50% better than their
reported number projected up for Pascal. Hence, we believe that
our GPU achieved performance number is quite reasonable.

Finally, we also attempted to take advantage of ternarization
in the GPU compute kernel, by avoiding multiplication and
instead using a sign bit flip. However, after further study, we
believe that the GPU is not able to take advantage of this
optimization. This is because instruction throughput of 32-bit
bitwise operations (e.g., AND, OR, XOR) is the same as the one
of 32-bit floating point operations. For example, Titan X Pascal
which supports CUDA Compute Capability 6.1 has the same
throughput of 128 operations per cycle per multiprocessor for
both operations. Therefore, either a multiply operation or a sign
bit flip operation would still require a single instruction in GPU,
with the same throughput. Hence, using a sign bit flip instead of a
multiply would not improve GPU performance. Therefore, we
opted to represent ternary value as float and used cuDNN.

5.5 FPGA vs. GPU Results
The performance and performance/watt of Stratix 10 FPGA

and Titan X GPU for ResNet-50 is shown in Figure 13. To
calculate throughput (TOP/sec), we divide the total operations in
ResNet-50 by the execution time.

Even for the conservative performance estimate, Stratix 10 is
already ~60% better than achieved Titan X performance. The
moderate and aggressive estimates are even better, delivering 2.1x
and 3.5x speedups over Titan X. Interestingly, the Stratix 10
aggressive 750MHz estimate can deliver 35% better performance
compared to theoretical peak performance of Titan X. In terms of
performance/watt, Stratix 10 delivers much better improvements
over Titan X, compared to pure performance, from 2.3x to 4.3x
across conservative to aggressive estimates.

We still need to do real measurements on the actual Stratix
10 FPGAs when they become commercially available, to verify
the estimates presented here. However, these estimated results are
very exciting evidence that next-generation Stratix 10 FPGA can
potentially deliver leadership performance over the state-of-the-art
high-performance GPU on next-generation DNNs.

6. DISCUSSION: OTHER DNN TRENDS
DNNs are rapidly advancing, and this paper does not cover

all the DNN trends. Below are two other emerging DNN trends
not studied in this paper, which we expect to be good for FPGAs.

Mathematical Transforms (e.g., Winograd). The first trend
is in optimizations using mathematical transforms. In particular,
Winograd transformation [23] has been shown to be amenable to
small DNN filters (e.g., 3x3) that are common in state-of-the-art
DNNs. Fast Fourier Transforms (FFTs) have also been shown to
be amenable for larger filters (5x5 and above), which are still used
in some DNNs. FPGAs have been known to be an efficient
platform for FFTs (e.g., [24]), and one could expect that they
would be well-suited for Winograd transformations as well. These
transforms are often computable in a streaming data fashion and
involve an arbitrary set of mathematical operators. And, there are
many possible transformation parameters that lead to different
compositions of mathematical operators. Such computation
properties (arbitrary composition of operations on streaming data)
are likely to be amenable to FPGAs.

Compression. There are various compression techniques
that have been proposed for DNNs, such as weight sharing [6],
hashing [25], etc. These techniques require find-grained data
accesses, with indexing and indirection on lookup tables, which
an FPGA fabric is particularly good at.

7. RELATED WORK
To the best of our knowledge, this is the first paper that

projects performance of DNNs on Stratix 10, provides comparison
against the latest Titan X Pascal GPU, and offers comprehensive
coverage for many emerging DNNs (i.e., sparse, binary, ternary).

FPGA Accelerators. There has been a plethora of prior
work focusing on FPGA-based deep learning accelerators (e.g.,
[10,11]). However, these works target older generation FPGAs,
with many of them targeting embedded FPGA platforms. In
contrast, this paper projects deep learning acceleration on state-of-
the-art Stratix 10 FPGA for high-performance applications.
Furthermore, prior works do not provide comparison to the latest
high-performance Titan X Pascal GPU. And, their accelerators do
not cover all of the variety of emerging DNN optimizations that
we evaluate here.

ASIC Accelerators. Aside from FPGA acceleration, there
have also been many works focusing on ASIC accelerators for
deep learning (e.g., [8,9,26]). Most of these studies focus on
“classic” DNNs that rely on dense matrix computation. There are
more recent ASIC accelerators [8,9] that have been optimized for
sparse DNNs and compact data types. Unlike these works, we
focus on FPGAs in this paper.

FPGA vs. GPU Studies. Finally, there are existing studies
that compare FPGAs against GPUs. The work in [27] compares
BLAS matrix operations among CPU, FPGA, and GPUs. The
work in [28][30] compare Neural Networks implemented on CPU,
FPGA, GPU, and ASIC. However, these studies target older
generation FPGAs and GPUs, while we target the latest Stratix 10
FPGA and Titan X Pascal GPU. Moreover, these prior studies do
not focus on all emerging DNNs that are studied in this paper.

8. CONCLUSION
Can FPGAs beat GPUs in performance for next-generation

DNNs? Our evaluation of a selection of emerging DNN
algorithms on two generations of FPGAs (Arria 10 and Stratix 10)
and the latest Titan X GPU shows that current trends in DNN
algorithms may favor FPGAs, and that FPGAs may even offer
superior performance. We created a customizable DNN hardware
template for FPGAs and used this to study various GEMM
operations for next-generation DNNs on FPGAs and GPUs. Our
results show that projected Stratix 10 performance is 10%, 50%,
and 5.4x better in performance (TOP/sec) than Titan X Pascal
GPU on GEMM operations for pruned, Int6, and binarized DNNs,
respectively. We also presented a case study on Ternary ResNet,
which relies on sparse GEMM on 2-bit weights, and achieved
accuracy within ~1% of the full-precision ResNet. On Ternary-
ResNet, the Stratix 10 FPGA is projected to deliver 60% better
performance over Titan X Pascal GPU, while being 2.3x better in
performance/watt. Our results indicate that FPGAs may become
the platform of choice for accelerating DNNs.

9. REFERENCES
[1] M. Courbariaux, Y. Bengio, J-P. David “BinaryConnect: Training

Deep Neural Networks with binary weights during propagations,”
NIPS 2015.

[2] M. Courbariaux, I. Hubara, et al., “Binarized Neural Networks:
Training Deep Neural Networks with Weights and Activations
Constrained to +1 or -1,” arXiv:1602.02830 [cs.LG].

[3] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi “XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural
Networks,” arXiv:1603.05279 [cs.CV]

[4] F. Li, B. Liu. “Ternary Weight Networks,” arXiv:1605.04711
[cs.CV]

[5] G. Venkatesh, E. Nurvitadhi, D. Marr, “.Accelerating Deep
Convolutional Networks Using Low-Precision and Sparsity,”
ICASSP, 2017.

[6] S. Han, H. Mao, W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization, and
Huffman Coding,” ICLR 2016.

[7] P. Gysel, et al., “Hardware-Oriented Approximation of
Convolutional Neural Networks,” ICLR Workshop 2016.

[8] J. Albericio, P. Judd, T. Hetherington, et al, “Cnvlutin: Ineffectual-
Neuron-Free Deep Convolutional Neural Network Computing,”
ISCA 2016.

[9] S. Han, X. Liu, et al., “EIE: Efficient Inference Engine on
Compressed Deep Neural Network,” ISCA 2016.

[10] N. Suda, V. Chandra, et al., “Throughput-Optimized OpenCL-based
FPGA Accelerator for Large-Scale Convolutional Neural Networks,”
ISFPGA 2016.

[11] J. Qiu, et al., “Going Deeper with Embedded FPGA Platform for
Convolutional Neural Network,” ISFPGA 2016.

[12] P.K. Gupta, “Accelerating Datacenter Workloads,” Keynote at FPL
2016. Slides available at www.fpl2016.org.

[13] A. Putnam, A. M. Caulfield, et al., “A Reconfigurable Fabric for
Accelerating Large-Scale Datacenter Services,” ISCA 2014.

[14] S. Y. Kung, “VLSI Array Processors,” Prentice-Hall, Inc. Upper
Saddle River, NJ, USA, 1987.

[15] A. Pedram, et al., “A High-Performance, Low-Power Linear Algebra
Core,” ASAP 2011.

[16] Altera Arria 10 Website. https://www.altera.com/products/fpga/arria-
series/arria-10/overview.html

[17] Altera Stratix 10 Website.
https://www.altera.com/products/fpga/stratix-series/stratix-
10/overview.html

[18] Nvidia Titan X Website.
http://www.geforce.com/hardware/10series/titan-x-pascal

[19] Altera’s PowerPlay Early Power Estimators (EPE) and Power
Analyzer, https://www.altera.com/support/support-
resources/operation-and-testing/power/pow-powerplay.html

[20] S. Gross, M. Wilber, “Training and investigating Residual Nets,”
http://torch.ch/blog/2016/02/04/resnets.html

[21] J. C. Johnson, “cnn-benchmarks”, available at
https://github.com/jcjohnson/cnn-benchmarks

[22] G. Baeckler, “HyperPipelining of High-Speed Interface Logic,”
ISFPGA Tutorial, 2016.

[23] A. Lavin, S. Gray, “Fast Algorithms for Convolutional Neural
Networks,” arXiv:1509.09308 [cs.NE].

[24] P. D’Alberto, P. A. Milder, et al., “Generating FPGA Accelerated
DFT Libraries,” FCCM 2007.

[25] W. Chen, J. Wilson, et al., “Compressing Neural Networks with the
Hashing Trick,” ICML 2015.

[26] Y. Chen, T. Luo, S. Liu, et al., “Dadiannao: A machine-learning
supercomputer,” Int. Symposium on Microarchitecture (MICRO),
2014.

[27] S. Kestur, et al., “BLAS Comparison on FPGA, CPU and GPU,”
IEEE Annual Sym. on VLSI (ISVLSI), 2010

[28] E. Nurvitadhi, J. Sim, D. Sheffield, et al, “Accelerating Recurrent
Neural Networks in Analytics Servers: Comparison of FPGA, CPU,
GPU, and ASIC,” FPL 2016.

[29] MAGMA: Matrix Algebra on GPU and Multicore Architectures.
Website: http://icl.cs.utk.edu/magma/

[30] E. Nurvitadhi, D. Sheffield, J. Sim, et al, “Accelerating Binarized
Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC,”
FPT 2016.

