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ABSTRACT 
Current-generation Deep Neural Networks (DNNs), such as 
AlexNet and VGG, rely heavily on dense floating-point matrix 
multiplication (GEMM), which maps well to GPUs (regular 
parallelism, high TFLOP/s). Because of this, GPUs are widely 
used for accelerating DNNs. Current FPGAs offer superior energy 
efficiency (Ops/Watt), but they do not offer the performance of 
today’s GPUs on DNNs.  In this paper, we look at upcoming 
FPGA technology advances, the rapid pace of innovation in DNN 
algorithms, and consider whether future high-performance FPGAs 
will outperform GPUs for next-generation DNNs. 

The upcoming Intel® 14-nm StratixTM 10 FPGAs will have 
thousands of hard floating-point units (DSPs) and on-chip RAMs 
(M20K memory blocks). They will also have high bandwidth 
memories (HBMs) and improved frequency (HyperFlex™ core 
architecture). This combination of features brings FPGA raw 
floating point performance within striking distance of GPUs. 
Meanwhile, DNNs are quickly evolving.  For example, recent 
innovations that exploit sparsity (e.g., pruning) and compact data 
types (e.g., 1-2 bit) result in major leaps in algorithmic efficiency. 
However, these innovations introduce irregular parallelism on 
custom data types, which are difficult for GPUs to handle but 
would be a great fit for FPGA’s extreme customizability.  

This paper evaluates a selection of emerging DNN algorithms on 
two generations of Intel FPGAs (ArriaTM 10, StratixTM 10) against 
the latest highest performance Titan X Pascal GPU. We created a 
customizable DNN accelerator template for FPGAs and used it in 
our evaluations. First, we study various GEMM operations for 
next-generation DNNs. Our results show that Stratix 10 FPGA is 
10%, 50%, and 5.4x better in performance (TOP/sec) than Titan X 
Pascal GPU on GEMM operations for pruned, Int6, and binarized 
DNNs, respectively. Then, we present a detailed case study on 
accelerating Ternary ResNet which relies on sparse GEMM on 2-
bit weights (i.e., weights constrained to 0,+1,-1) and full-precision 
neurons. The Ternary ResNet accuracy is within ~1% of the full-
precision ResNet which won the 2015 ImageNet competition. On 
Ternary-ResNet, the Stratix 10 FPGA can deliver 60% better 
performance over Titan X Pascal GPU, while being 2.3x better in 

performance/watt. Our results indicate that FPGAs may become 
the platform of choice for accelerating next-generation DNNs. 
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1. INTRODUCTION 
The exponential growth of digital data such as images, 

videos, and speech, from myriad sources (e.g., social media, 
internet-of-things) is driving the need for analytics to extract 
knowledge from the data. Data analytics often rely on machine 
learning (ML) algorithms. Among ML algorithms, deep 
convolutional neural networks (DNNs) offer state-of-the-art 
accuracies for important image classification tasks, and therefore 
are becoming widely adopted. 

Mainstream current-generation DNNs (e.g., AlexNet, VGG) 
rely heavily on dense matrix multiplication operations (GEMM) 
on 32-bit floating-point data (FP32). Such operations are well-
suited for GPUs, which are known to do well on regular 
parallelism and are equipped with many floating-point compute 
units and high-bandwidth on-chip and off-chip memories. As 
such, recent GPUs are becoming more widely used for 
accelerating DNNs, since they can offer high performance (i.e., 
multi-TFLOP/s) for mainstream DNNs.  

While FPGAs have provided superior energy efficiency 
(Performance/Watt) than GPUs for DNNs, they have not been 
known for offering top performance. However, FPGA 
technologies are advancing rapidly. The upcoming Intel Stratix 10 
FPGA [17] will offer more than 5000 hardened floating-point 
units (DSPs), over 28MB of on-chip RAMs (M20Ks), integration 
with high-bandwidth memories (up to 4x250GB/s/stack or 1TB/s), 
and improved frequency from the new HyperFlex technology, 
thereby leading to a peak 9.2 TFLOP/s in FP32 throughput. In 
comparison, the latest Nvidia Titan X Pascal GPU offers 11 
TFLOPs in FP32 throughput. This means that FPGA performance 
may be just within striking distance. 

Moreover, DNN algorithms are evolving rapidly. Recent 
developments point toward next-generation DNNs that exploit 
network sparsity [4,5,6] and use extremely compact data types 
(e.g., 1bit, 2bit) [1,2,3,4,5]. These emerging DNNs offer orders of 
magnitude algorithmic efficiency improvement over “classic” 
DNNs that rely on dense GEMM on FP32 data type, but they 
introduce irregular parallelism and custom data types, which are 
difficult for GPUs to handle.  In contrast, FPGAs are designed for 
extreme customizability. FPGAs shine on irregular parallelism 
and custom data types. An inflection point may be near!  
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The key question is: For next-generation DNNs, can FPGAs 
beat GPUs in performance? This paper is the first to shed light on 
the answer by offering the following contributions: 

 First, we survey key trends in next-generation DNNs that 
exploit sparsity and compact data types. We cover pruned 
sparse networks [6], low N-bit networks [6,7], 1-bit binarized 
networks [1,2,3], and 2-bit sparse ternary networks [4,5]. 

 Second, we develop a customizable DNN hardware 
accelerator template for FPGA that can support various next-
generation DNNs. The template offers first-class hardware 
support for exploiting sparse computation and custom data 
types. It can be customized to produce optimized hardware 
instances for FPGA for a user-given variant of DNN. 

 Third, using the template, we evaluate various key matrix 
multiplication operations for next-generation DNNs. Our 
evaluation is done on the current- and next-generation of 
FPGAs (Arria 10, Stratix 10) and the latest high-performance 
Titan X Pascal GPU. We show that Stratix 10 FPGA is able 
to offer 10%, 50%, and 5.4x better in performance (TOP/sec) 
than Titan X Pascal GPU on GEMM operations for pruned, 
Int6, and binarized DNNs, respectively. We also show that 
both Arria 10 and Stratix 10 FPGAs offer compelling energy 
efficiency (TOP/sec/watt) relative to Titan X GPU. 

 Lastly, we conduct a case study on Ternary ResNet [5], 
where the key operation is multiplication of two sparse 
matrices.  One matrix has FP32 values, and the other has 
ternary 2-bit values (i.e., weights are constrained to 0,+1,-1). 
The accuracy of Ternary ResNet [5] is within ~1% of the 
best reported accuracy of the most recent 2015 ImageNet 
competition winner (i.e., full-precision ResNet). For Ternary 
ResNet, the Stratix 10 FPGA can deliver 60% better 
performance than Titan X Pascal GPU, while being 2.3x 
better in performance/watt. 

The rest of the paper is organized as follows. Section 2 
provides background on DNN, FPGA, and GPU trends. Section 3 
discusses our customizable DNN hardware accelerator template, 
which we use to derive FPGA implementation instances to 
evaluate against the GPU. Section 4 compares various types of 
GEMMs for next-generation DNNs. Section 5 presents a case 
study on Ternary ResNet on FPGAs and GPUs. Section 6, 7, and 
8 offers discussions, related work, and concluding remarks. 

 

Figure 1. Machine learning for data analytics. The training 
phase creates a model from known training data. The model is 
then used during inference to make predictions on new data. 

2. BACKGROUND 
2.1 Deep Neural Networks Overview 

Classification vs. Training. Many data analytics workloads 
rely on machine learning (ML) algorithms. A typical ML setup for 

data analytics consists of two phases, as illustrated in Figure 1. 
First, the training phase iteratively works on a known set of data 
samples (e.g., various images and its known categories in Figure 
1) to create a model with predictive power. Then, the inference 
phase uses the model to make predictions for newly seen data 
samples (e.g., predicting a category of a newly seen image, in 
Figure 1). Section 4 of this paper focuses on key matrix operations 
used in both inference and training phases, while the case study 
presented in Section 5 focuses on the inference phase. 

 

Figure 2. An example neural network with 4 fully connected 
layers (input I, hidden H1 and H2, output O). Inference does 

only forward pass. Training iteratively does forward and 
backward passes to update weights (W1, W2, W3).  

Neural Networks Basics. As mentioned earlier, deep 
convolutional neural network (DNN) is a class of ML algorithms 
that are widely used because they offer state-of-the-art inference 
accuracies. Neural networks can be formulated as graphs, where 
nodes represent neurons and edges represent connections across 
the neurons. Each neuron and edge is associated with a value. 
Neuron values are often referred to as activation values, and edge 
values as network weights. The graph is structured as layers of 
neurons. Figure 2 illustrates a 4-layer network, with an input layer 
and an output layer, and two hidden layers between them.  

The neural network computation works by going through 
each layer in the network. For a given layer, each neuron’s value 
is calculated by multiplying and accumulating all the values of the 
previous layer’s neurons with the corresponding edge weights. 
Thus, the computation heavily relies on multiply-accumulate 
operations. The DNN computation consists of forward and 
backward passes, as illustrated in Figure 2. The forward pass takes 
a sample at the input layer, goes through all hidden layers, and 
produces a prediction at the output layer. For inference, only the 
forward pass is needed to obtain a prediction for a given sample. 
For training, the prediction error from the forward pass is then fed 
back during the backward pass to update the network weights – 
this is called the back-propagation algorithm. Training iteratively 
does forward and backward passes to refine network weights until 
the desired accuracy is achieved.  

 

Figure 3. Fully connected layers can be formulated as matrix 
multiplications. When there are zeros, the computation 

becomes sparse matrix multiply. Though not illustrated here, 
convolution layer can also be formulated as matrix multiply. 

There are different types of DNN layers. A fully connected 
(FC) layer connects all the neurons in one layer to all the neurons 
in the next layer (as in Figure 3). A convolutional layer connects 



only to groups of neighbor neurons. Activation and normalization 
layers transform neuron values. And, pooling layers merge a 
group of neuron values. Modern DNNs typically have multiple 
sets of each type of layers. Each one has a convolutional layer, 
followed by some combination of activation (i.e., ReLU) layers, 
batch normalization layers, and pooling layers (to reduce the size 
of the computation for the later layer and to avoid overfitting). FC 
layers were used in earlier networks (e.g., AlexNet, VGG). Recent 
networks (e.g., ResNet) use only very few or no FC layers. For 
modern DNNs, most computation is on the convolution layers 
(e.g., [8] reports ~90% time spent on convolutions) 

Network Layers as Matrix Multiply. The fully-connected 
and convolutional layers can be formulated as matrix 
multiplication. In practice, such formulation may make it more 
amenable for high-performance implementations (e.g., by using 
an optimized math library, such as Intel MKL). Figure 3(a) shows 
an illustration, where a 3-neuron input layer (I) and a 2-neuron 
output layer (O) are formulated as dense vectors, and the weights 
(W) are formulated as a 2x3 dense matrix. The computation 
multiplies the vector of input neurons with the weight matrix. 

2.2 Trends in Deep Neural Networks 
Trend 1: Deeper networks lead to more accuracy, but 

these large models are becoming intractable to process. In 
recent years, many have shown that deeper neural networks can 
deliver greatly improved inference accuracies. Table 1 shows the 
winners of the well-known ILSVRC challenge on ImageNet 
dataset for the past several years. As shown in the table, the 
accuracy has increased tremendously since 2012, with a 4.5x 
reduction in the top-5 error rate (16.4 to 3.5%), but the number of 
layers has also gone up 19x (8 layers in AlexNet to 152 layers in 
ResNet). Deeper networks require more computation to perform. 

Table 1. Recent DNNs are deeper and more accurate. 
Furthermore, larger model makes processing intractable, 
leading to recent focus on more efficient DNN algorithms. 

Network 
Top-5 

Error % 
Depth  

(#layers) 
Model 

Size (MB) 

AlexNet (ILSVRC’12) 15.3 8 240 

VGG (ILSVRC’14) 7.3 19 500 

GoogLeNet 
(ILSVRC’14) 

6.7 22 24 

ResNet (ILSVRC’15) 3.57 152 240 

Along with deeper networks, early networks were greatly 
increasing the number of parameters, consequently leading to 
larger model sizes. In 2012, AlexNet had 60M parameters 
(240MB, 4B/parameter), while in 2014 VGG had a ~2x larger 
model. The increase in model size significantly increases the 
computational requirements, memory bandwidth, and storage 
needed to move and store the model. Therefore, more recent 
DNNs necessarily designed the networks to be more efficient. For 
example, GoogLeNet uses a composition of varying size filters, to 
allow for deeper network, while having a manageable model size. 
ResNet utilizes a “shortcut” connection to skip layers, enabling 
sharing of weights across more layers, resulting in a very deep 
network with a model size smaller than VGG.  

Trend 2: Improving efficiency by using more compact 
data types. Another avenue for improving DNN efficiency is to 
use more compact data types. Many researchers have shown (e.g., 
[6,7,10,11]) that it is possible to represent data in much less than 
32-bits, demonstrating the use of 8-4 bits (depending on the 

network) leads to only a small reduction in accuracy compared to 
full precision. Data types which are more compact than 32-bit 
single precision floating point are becoming the new norm. As an 
evidence of this, the latest GPUs are providing native support for 
FP16 and Int8 data types. Moreover, popular DNN frameworks, 
such as TensorFlow, provide support for such data types as well. 

Interestingly, very recently, there are many active research 
efforts that study extremely compact data representation. In 
particular, research on binarized neural networks (BNNs) [1,2,3] 
investigates the use of 1-bit data types, by constraining values to 
+1 or -1. The most efficient variant of BNNs proposes using 1-bit 
for both neurons as well as weights. The brilliance of doing this is 
that not only is the storage size and bandwidth demand 
dramatically lower (32x smaller than FP32), but the computation 
of 1-bit “multiply-accumulate” can be done without 
multiplications or additions!  The computation boils down to an 
xnor followed by a bitcounting operation. We provide details on 
how to do this in Section 3.  

BNNs have comparable accuracies to state-of-the-art full 
precision networks for small datasets (e.g., CIFAR10). However, 
the BNN accuracy on larger datasets (e.g. ImageNet) has not yet 
been realized. Nevertheless, BNN research is very active and 
rapidly advancing. For example, a BNN variant called BinaryNet 
[2] demonstrated a near state-of-the-art accuracy on CIFAR10 in 
early 2016, but was not evaluated on ImageNet. In August of 
2016, a new work [3] reported evaluations of ImageNet using 
BinaryNet and proposed a new variant of BNN called XNOR-net. 
The work shows that BinaryNet achieves only half the accuracy of 
AlexNet on ImageNet, but XNOR-net gets within 22% of 
AlexNet accuracy. Given the rapid rate of advances in this 
research, even better accuracy may be achieved in the near future.  

Ternary neural networks (TNNs) [4,5] are another class of 
network that proposes extremely low bit-width. TNNs constrained 
weight values to 0, +1, or -1, which can be represented in 2 bits. 
Recently [5], TNNs have been shown to provide comparable 
accuracy on ImageNet, within 1% of full-precision ResNet-152, 
which is the latest ILSVRC winner. However, such TNNs still 
rely on FP32 neuron values. Thus, the multiply-accumulate 
computations are done between FP32 neurons and 2-bit weights. 
While this makes computation more efficient (detailed in Section 
3), the efficiency gain is not as great as that of BNNs. 

Trend 3: Improving efficiency by taking advantage of 
sparsity. There are many studies on exploiting sparsity (i.e., the 
presence of zeros) in DNN neurons and weights. In recent years, 
most networks use Rectified Linear Unit (ReLU) as the activation 
function, which zeroes out negative neuron values. It has been 
reported [8] that ~50% of neuron values in popular networks (e.g., 
AlexNet, VGG) are zeros. Computation on such zero-valued 
neurons is unnecessary. As illustrated in Figure 3(b), in the 
presence of zero values, the computation becomes sparse matrix 
multiplication, which requires fewer operations than dense matrix. 

Furthermore, there are also research efforts to exploit 
sparsity on the weight values [6]. Such research show that it is 
possible to make network weights sparse while maintaining 
accuracy, by zeroing out (“pruning”) weights that are deemed to 
be not important. The recent result in [6] shows that such pruning 
on AlexNet and VGG-16 results in up to 91% and 96% sparsity 
for certain layers, without sacrificing accuracy. In our own 
experiments, based on the approach in [6], we are able to achieve 
~85% sparsity for AlexNet convolutional layers, and even more in 
fully connected layers, for ImageNet dataset, with only ~1% 



degradation in accuracy. We were also able to prune GoogleNet 
with only ~0.2% drop in accuracy, while achieving ~65% sparsity 
for all convolution layers, except for the first layer. 

Another method to sparsify weights is by ternarization. As 
mentioned earlier, TNNs constrain weights to 0, +1, or -1. Thus, it 
introduces many zeros to the weights. A Ternarized ResNet that 
delivers comparable accuracy to full-precision ResNet introduces 
~50% sparsity to the weights.  

Other Trends. DNN research is rapidly evolving and there 
are trends not covered in this paper. We offer discussions on these 
in Section 6. Nevertheless, we believe that sparsity exploitation 
and the use of extremely compact data types are two major trends 
likely to become the norm in the next-generation DNNs. 
Therefore, we focus on these in the remainder of the paper. 

2.3 GPU vs. FPGA Trends 
GPUs are known to do well on data parallel computation that 

exhibits regular parallelism and demands high floating point 
compute throughput. Across generations, GPUs offer increased 
FLOP/s, by incorporating more floating-point units, on-chip 
RAMs, and higher memory bandwidth. For example, the latest 
Titan X Pascal offers peak 11 TFLOP/s of 32-bit floating-point 
throughput, a noticeable improvement from the previous 
generation Titan X Maxwell that offered 7 TFLOP/s peak 
throughput. However, GPUs can face challenges from issues, such 
as divergence, for computation that exhibits irregular parallelism. 
Further, GPUs support only a fixed set of native data types. So, 
other custom-defined data types may not be handled efficiently. 
These challenges may lead to underutilization of hardware 
resources and unsatisfactory achieved performance. 

Meanwhile, FPGAs have advanced significantly in recent 
years. There are several FPGA trends to consider. First, there are 
much more on-chip RAMs on next-generation FPGAs. For 
example, Stratix 10 [17] offers up to ~28 MBs worth of on-chip 
RAMs (M20Ks). Second, frequency can improve dramatically, 
enabled by technologies such as HyperFlex. Third, there are many 
more hard DSPs available. Fourth, off-chip bandwidth will also 
increase, with the integration of HBM memory technologies. 
Fifth, these next-generation FPGAs use more advanced process 
technology (e.g., Stratix 10 uses 14nm Intel technology). Overall, 
it is expected that Intel Stratix 10 can offer up to 9.2 TFLOP/s of 
32bit floating-point performance. This brings FPGAs closer in 
raw performance to state-of-the-art GPUs. Unlike GPUs, the 
FPGA fabric architecture was made with extreme customizability 
in mind, even down to bit-levels. Hence, FPGAs have the 
opportunity to do increasingly well on the next-generation DNNs 
as they become more irregular and use custom data types. 

In addition, the software ecosystem for FPGAs is advancing 
as well. High-level FPGA programming tools (e.g., Altera 
OpenCL SDK) are now commercially available. They allow 
programming FPGAs at a higher level of abstraction than RTL 
(e.g., Verilog). These tools make FPGAs more accessible to 
developers who are not hardware experts. FPGAs are integrating 
into mainstream compute systems, e.g., alongside a server CPU in 
an upcoming Intel Xeon®+FPGA offering [12], inside a network 
card, or as a “GPU form factor” PCIe card. These trends can 
speed up FPGA adoption into the mainstream systems. Indeed, 
there are ongoing efforts from leading technology companies to 
incorporate FPGAs into datacenters (e.g., [12,13]). 

3. CUSTOMIZABLE HARDWARE 
ARCHITECTURE TEMPLATE FOR DNNS 

We have developed customizable hardware architecture 
“template” for DNNs, which takes into account the emerging 
DNN trends mentioned in Section 2 (i.e., sparsity, compact data 
types). The template can be configured to derive hardware 
instances (i.e., RTL implementation) for a given user-specified 
DNN variant. Such instances can then be mapped to FPGA (or 
ASIC). We use this template to facilitate our evaluations of next-
generation DNNs on FPGAs and to compare them against GPUs, 
which we will discuss in the next two sections. Meanwhile, we 
describe our customizable DNN hardware template in this section. 

 

Figure 4. Customizable hardware architecture template for 
DNNs. (a) shows top-level design. (b) and (c) show variants of 
GEMM unit supported by our template. (d) and (f) show PE 

designs for handling dense and sparse data. (e) shows 
optimization for binarized GEMM, where multiply-

accumulate operation is done using xnor and bitcounting.  

3.1 Overview 
The top-level design of our template is shown in Figure 4(a). 

The design consists of Memory and On-chip data management 
units (MDM, ODM), GEMM Unit to compute convolutional and 
fully connected layers, and Misc Layers Unit (MLU) to compute 
the other DNN layer types (ReLU, Batch Norm, Pool).  

The design works as follows. First, weights and input 
neurons are loaded into on-chip buffers in ODM from memory. 
The convolution and fully-connected layers are computed by 
dynamically flattening the weights and input feature maps 
(neurons) onto blocked matrix operations, as in [10]. The GEMM 
Unit performs such matrix operations and outputs the result to 
MLU, which then performs the ReLu/BatchNorm/Pooling layers, 
as dictated by the desired DNN configuration. The output goes 
into the on-chip buffer in ODM, to be read by the next 
convolution/FC layer. If there is not enough buffer in ODM, the 
output is spilled out to memory by MDM.   



The GEMM Unit consists of multiple processing elements 
(PEs). The GEMM Unit is customizable to use systolic-based [14] 
or broadcast-based [15] architecture across PEs, as shown in 
Figures 4(b) and 4(c). PE is customizable to be able to perform 
one or more multiply-accumulate operations.  

In overall, the template is customizable to use various 
GEMM and PE architectures (systolic/broadcast; sparse/dense) 
and data types (1bit/2bit/Nbit/FP), as well as the typical sizing 
parameters (e.g., number of PEs, GEMM units, buffer sizes, etc.).  

3.2 Support for Emerging DNNs 
Our architecture template incorporates features to exploit 

sparsity and to handle compact data types, which are needed by 
emerging DNNs. We describe these features below. 

3.2.1 Support for N-bit data type 
FPGAs have been known to be extremely flexible to handle 

various data types. Many prior DNN works (e.g., [6,7,10,11]) 
have shown promising results implementing customized N-bit 
data. Our architecture template can also support customization to 
N-bit data. PEs can be customized to handle varying width of dot 
product calculations based on data type width. Accordingly, the 
data management units (ODM, MDM) can be customized to 
handle packing/unpacking of the desired N-bit data types.  

3.2.2 Support for Sparse Pruned DNNs 
There are many existing studies on processing sparse 

matrices (e.g., in HPC applications). However, such studies 
typically use matrices that are extremely sparse (i.e., 1% or less 
non-zeros). We observe that the sparsity in DNNs is not as 
extreme (i.e., ~5-50% non-zeros). Therefore, instead of utilizing a 
sparse matrix format (e.g., CSR), we opted to use a dense format, 
but dynamically checked/tracked zeros and skipped zero 
computation (i.e., similar to the approach from [8]). Specifically, 
prior to feeding data to GEMM Unit, on-chip data manager 
checks for zero values and includes metadata (index or bitvector) 
to identify the locations of the zeros in the block of data providing 
to the GEMM unit. Each processing element (PE) inside the 
GEMM unit will read a set of matrix elements along with the 
metadata. It will then schedule computation based on information 
in the metadata. Those zero elements are not scheduled onto the 
multiply-accumulate compute units inside the PE, therefore 
reducing number of cycles needed to complete the matrix 
operations and improving overall performance. The design of the 
PE to support sparsity is shown in Figure 4(f). In contrast, the PE 
design for regular dense computation is shown in Figure 4(d). 

 

Figure 5. Binarized Matrix Multiplication. By representing -1 
as 0, standard multiply and add operations (a) can be replaced 

by xnor and bit counting operations (b), where bit counting 
can be done using a lookup table (c). 

3.2.3 Support for Binarized DNNs 
In binarized DNNs (BNNs), both weight and neuron values 

are constrained to +1 or -1. Therefore, the key operation in BNNs 
is 1-bit matrix multiplication. Figure 5(a) shows an example of a 
1-bit matrix multiply. To improve computation efficiency -1 can 
be represented as zeros, and computation can be done using an 
xnor followed by a bit counting operation (as in Figure 5(b)). The 
bit counting itself can further be implemented using a lookup 
table, as shown in Figure 5(c). Our DNN architecture template 
provides a customization option for a PE that performs N-bit dot 
products using the aforesaid approach, as depicted in Figure 4(e). 

3.2.4 Support for Ternarized DNNs  
Lastly, the support for Ternarized DNNs (TNNs) in our 

architecture is as follows. In TNNs, weights are constrained to 0, 
+1, or -1, but neurons are still using N-bit precision. In this case, 
we represent ternary weights using 2 bits, with 1 bit indicating 
whether the value is 0 and another bit indicating whether the value 
is +1 or -1 (as in BNNs). The PE uses the 1-bit zero indicator in 
the same way as the metadata bits used to exploit sparsity in 
Section 3.2.2. As such, whenever there is an operation against a 
zero weight, the operation will be skipped and not be scheduled 
onto the PE’s compute unit(s). If the weight is either +1 or -1, 
instead of performing multiplication against N-bit precision 
neuron values, we simplify the computation by negating the sign 
of the neuron value (i.e., a sign bit flip if neuron is floating-point, 
or negation if it is fixed point). As such, PE for ternary 
computation does not require a multiplication unit. 

4. EVALUATION OF MATRIX MULTIPLY 
FOR NEXT-GENERATION DNNS 

Matrix multiplication is a key operation in DNNs.  It is 
important to have a thorough understanding of the achievable 
peak performance of this key operation on the platforms studied.   
For this reason, we evaluate matrix multiplication on a variety of 
matrix and data types.  We selected dense and sparse matrices, 32-
bit floating point data types vs. narrow bit-width data types, and 
even an extremely compact binarized 1-bit data type.   

Table 2. FPGAs and GPU under study. Based on [16,17,18] 

Type 
Arria 10 1150 

FPGA 
Stratix 10 2800 

FPGA 
TitanX Pascal 

GPU 
Peak FP32 
TFLOPs 

1.36 9.2 11 

On-chip 
RAMs 

6.6 MB  
(M20Ks) 

28.6 MB  
(M20Ks) 

13.5 MB  
(RF, SM, L2) 

Memory BW 
Assume same 

as Titan X 
Assume same as 

Titan X 
480 GB/s 

4.1 Methodology 
Since we would like to understand the top possible 

performance achievable by FPGAs and GPUs for the types of 
matrix multiplications under study, we allow freely choosing 
matrix sizes that provide the best performance for the target 
platform. This ended up being in the range of dimensions of 2K-
4K. We also chose amenable batch sizes (i.e., number of 
independent matrix multiplications), since batching is a common 
practice when running DNNs on GPUs to maximize throughput. 

The specific FPGAs and GPU studied are shown in Table 2. 
We include two generations of FPGAs (Arria 10 and Stratix 10) 
and compare them with the Titan X Pascal GPU, the latest and 
highest performance GPU available for purchase at this paper’s 
submission deadline (September of 2016).  



To make a fair FPGA comparison to the GPU, we decided to 
allow the FPGA to have the same memory capacity and 
bandwidth as the GPU.  Although readily-available FPGA cards 
have less capable memory system than the GPU card, integrated 
HBM stacks in the upcoming Stratix 10 will allow FPGA 
packages and cards to have the equivalent memory bandwidth and 
capacity as the GPU cards.  We want to evaluate the potential 
fundamental advantages of FPGA vs. GPU rather than penalizing 
our FPGA study with memory limitations that can be addressed 
with packaging and card-level solutions. 

For our FPGA evaluation, we derived RTL instances from 
our DNN hardware template, with customizations selected to 
optimize for the matrix operations under study. Then, we use 
Altera QuartusTM software, EPE tool [19], analytical modeling, 
and simulations to estimate performance and power. For Stratix 
10, which has been announced, but not yet available, we use 
Quartus Early Beta release. Note that its quality is not necessarily 
reflective of future more mature releases of Quartus for Stratix 10. 

For our GPU evaluation, we conduct real system 
measurements on the Nvidia Titan X Pascal card. We use nvprof 
to collect performance and power numbers.  

4.2  “Classic” DNNs 
Current mainstream (i.e., “classic”) DNNs, such as AlexNet, 

VGG, Googlenet, ResNet, etc., typically rely on dense matrix 
multiplication on single-precision floating point numbers (FP32).  

 
Figure 6. Matrix multiplication results for “Classic” DNNs. It 

operates on dense matrices with FP32 data type 

For GPU, we measured the FP32 dense matrix multiplication 
performance using the cuBLAS library in the Nvidia CUDA 
Toolkit 8.0 RC. Most of the instructions in the cuBLAS SGEMM 
implementation are FMAs, leading to high compute efficiency. 
The peak theoretical performance of Titan X Pascal is 11 
TFLOPs, and we achieved 10.88 TFLOPs with the cuBLAS 
matrix multiplication library call. 

FP32 dense matrix multiplication is a sweet spot for GPUs, 
not FPGAs, so we did not create an optimized FPGA 
implementation for this. We present comparison of peak numbers 
based on the FPGA and GPU datasheets instead (in Figure 6).  

As Figure 6(a) shows, Stratix 10 with its far greater number 
of DSPs will offer much improved FP32 performance compared 
to the Arria 10, bringing the Stratix 10 within striking distance to 
Titan X performance. However, the peak FP32 TOP/s still lags 
behind the GPU. It could be possible for FPGAs to win in 
performance/Watt. Figure 6(b) shows that the Stratix 10 can be up 
to ~40% better than Titan X if we assume the FPGA peak TOP/s. 

4.3 Sparse (Pruned) DNNs 
As described in Section 2, next-generation DNNs are likely 

to operate on sparse matrices. Pruning [6] is a recent, popular 

technique to make DNN weights sparse without little or no loss in 
accuracy. For our study, we replicated the pruning results for 
AlexNet from [6] using our in-house software reference. We also 
ran further experiments to fine-tune (e.g., pruning threshold, 
number of re-training iterations) and optimize our results. We are 
able to achieve on average ~85% sparsity in the convolution 
layers of AlexNet with less than a 1% degradation in accuracy 
(fully connected layers are even more sparse).  Hence, our 
evaluation uses matrices with 85% sparsity (i.e., 15% non-zeros). 

4.3.1 Sparse Matrix Multiply on GPU 
Evaluating sparse matrix multiply for pruned DNNs can be 

challenging for GPUs. Modern GPU architectures employ what is 
known as a single-instruction multiple-thread (SIMT) execution 
model, in which multiple threads execute the same sequence of 
instructions, on different data, in a lock step fashion. As such, 
although a few threads may skip zero computation, the 
corresponding SIMT lanes simply remain idle while the threads 
on the other SIMT lanes perform non-zero computation. In 
addition, checking for zeros in the matrices adds extra instructions 
to the execution kernel, which reduces compute efficiency. 

Another approach is to use sparse linear algebra libraries for 
zero-skipping. However, existing GPU libraries such as 
cuSPARSE are targeted for traditional sparse matrix operations 
that perform on extremely sparse matrices with less than 1% of 
zeros (e.g., well-known in the High-Performance Computing 
domain). Also, for sparse matrix multiplication, the input matrices 
need to be converted to one of the standard sparse matrix formats 
such as compressed sparse row (CSR) or compressed sparse 
column (CSC). Since the matrices in DNNs are not extremely 
sparse (i.e., ~5%-50% sparsity), using these sparse libraries leads 
to large overhead. 

To address this problem, we wrote our own sparse matrix 
multiply implementation. Our implementation uses dense matrix 
format, but it checks and skips zeros dynamically in a similar way 
as our FPGA implementation. Our implementation is a 
modification on top of an optimized open-source MAGMA [29] 
dense matrix multiply library. While we would have liked to 
implement our algorithm on top of cuBLAS, the code for cuBLAS 
is not open-source. The MAGMA library is one of the most 
optimized open-source GPU libraries that we could find.  

 

Figure 7. GPU performance on sparse (zero-skipping) GEMM 
versus dense GEMM for various sparsity levels. Zero-skipping 

sparse GEMM performs worse than normal dense GEMM.  

Figure 7 shows the comparison between the baseline 
SGEMM (without zero-skipping) and SGEMM with zero-
skipping for varying sparsity levels. As explained before, 
dynamically checking zero values degrades performance as it 
needs to execute more non-useful instructions, without increasing 
SIMT utilization. Across the different sparsity percentages, zero-
skipping kernel performs worse than without zero-skipping. 
Hence, for comparison against FPGA, we use GPU performance 
on dense matrix multiplication. This is because the GPU 
performance is far better on dense matrix, computing all the 
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multiplications, including the zeros. Specifically, we use the 
cuBLAS library in the Nvidia CUDA Toolkit 8.0 RC. 

 

Figure 8. Matrix multiplication results for DNNs with 
pruning. It operates on sparse matrices with FP32 data type. 
We use 85% sparsity, based on pruned AlexNet experiments. 

For GPU, we report achieved performance on FP32 dense 
matrix multiply, since we found that sparse matrix 

multiplication lead to GPU performance degradation. 

4.3.2 Sparse Matrix Multiply on FPGA 
For FPGA, we use the design described in Section 3.2.2. 

Since on FPGA we can detect and skip zero computation in a fine 
grained manner, at 85% sparsity we observe ~4x speedups in 
cycle count, as our GEMM Unit is able to skip many zeros.  

For Stratix 10, we made conservative, moderate, and 
aggressive performance projections. The conservative estimate is 
based on mapping and scaling up our GEMM implementation for 
Arria 10 directly to Stratix 10 without doing any optimization for 
HyperFlex to achieve higher frequency. Hence, the conservative 
estimate uses 300MHz frequency, matching the Arria 10 design. 
The moderate and aggressive projections anticipate frequency 
boosts from HyperFlex to 500MHz and 700MHz, respectively.  

4.3.3 FPGA vs. GPU 
The performance and performance/watt for FPGAs and GPU 

under study is shown in Figure 8. As shown in Figure 8(a), even 
the conservative 300 MHz estimate for Stratix 10 is only ~34% 
worse in performance than GPU. The moderate estimate using 
500 MHz brings Stratix 10 performance to ~10% better than GPU, 
and the aggressive estimate improves it even further.  

In terms of performance/watt, Figure 8(b) shows that FPGAs 
offer more compelling results than GPU across the board. Arria 
10 offers 16% better performance/watt over GPU, with Stratix 10 
offering even further improvements. 

 

Figure 9. Matrix multiplication results for DNNs with 
compact data types. It operates on dense matrices. We use 6-
bit (Int6) data type for FPGA. For GPU, which does not have 

native support for Int6, we use theoretical peak Int8 GPU 
performance for comparison.  

4.4 Compact Narrow-Bitwidth DNNs 
As described in Section 2, there is significant prior work in 

quantizing data to reduce computation requirements and bit-
widths to values smaller than 32-bit floating point. While 8-bit or 
larger data types were used in the past DNN proposals, there are 
trends towards even smaller sub-8-bit data types [6,7]. Here, we 
evaluate dense matrix multiplication using the Int6 data type.  

We use FPGA implementation based on systolic GEMM 
(shown in Figure 4(b)) that is well optimized for frequency. It can 
achieve 440MHz for Arria 10 and 920MHz in Stratix 10. For 
GPU, we use theoretical peak Int8 performance for Titan X, since 
GPU does not have native support for Int6 computations. 

Our evaluation results are shown in Figure 9. As Figure 9(a) 
shows, Stratix 10 Int6 performance is more than 50% better than 
the Titan X theoretical peak Int8 performance (Titan X Int6 
performance is expected to not be better than Int8). As Figure 9(b) 
shows, performance/watt of FPGA is either comparable (Arria 10) 
or more than 2x better (Stratix 10) than Titan X GPU. 

4.5 Binarized DNNs 
Recent “binarized” DNNs have proposed using extremely 

compact 1bit data types. As detailed earlier, 1bit matrix 
multiplications in binarized DNNs can be done more optimally 
using xnor and bitcounting operations.  

For GPU evaluation, we use a binary matrix multiply kernel 
(xnor_gemm) from BinaryNet [2], which is based on the blocked 
version of matrix multiply in the CUDA Programming Guide. In 
the xnor_gemm implementation, instead of performing FMA 
operations for matrix multiply, each CUDA thread performs xnor 
and population count operations to compute one element of the 
resulting matrix. The population count operation is supported in 
Nvidia GPUs via __popc() (for 32-bit) and __popcll() (for 64-bit) 
intrinsic functions. When these intrinsics are used in the CUDA 
kernel, the CUDA compiler maps __popc() to a single instruction 
and __popcll() to a few instructions. 

On Titan X Pascal, 32 32-bit population count operations can 
be issued every cycle per Streaming Multiprocessor (SM), which 
leads to 1024 “binary ops” per cycle per SM. As Titan X can issue 
up to 128 FP32 FMA instructions every cycle per SM, the peak 
throughput of “binary ops” over FP32 operations is 4x. In our 
Titan X Pascal, we achieve 45.6 TOPs for binary GEMM 
performance. 

For FPGA, we use systolic array GEMM unit with the PE for 
binarized DNNs, which we described earlier in Section 3.2.3. Our 
PE is configured to do 256-wide binary dot product operations. 
We synthesized our implementation to Arria 10 and Stratix 10. 
For validation, we also deployed and ran the design on an Arria 
10 development system.  

 

Figure 10. Matrix multiplication results for binarized DNNs. 
It operates on dense matrices with 1bit data types. Multiply 

and add operations are replaced with xnor and bitcount. 



Our evaluation results are shown in Figure 10. Stratix 10 can 
deliver 3x (conservative) to 12x (aggressive) better performance 
than achieved performance on Titan X GPU, and 70% 
(conservative) and over 6x (aggressive) than theoretical 
performance of Titan X. Meanwhile, Arria 10 can deliver 25% 
better performance than achieved Titan X GPU performance. In 
terms of performance/watt, the Arria 10 and Stratix 10 can deliver 
3x to over 10x better energy efficiency relative to Titan X. 

5. TERNARY RESNET CASE STUDY 
In the previous section, we evaluated key operations in 

various emerging DNNs. In this section, we zoom in on a specific 
DNN. In particular, we report a case study on accelerating 
Ternary version of the state-of-the-art ResNet [5]. 

5.1 Ternary ResNet Overview 
Ternary DNNs (i.e., Ternary Weight Networks) [4,5] have 

recently proposed constraining neural network weights to +1, 0, or 
-1, allowing for weights to be represented with just 2 bits, while 
simultaneously introducing more sparsity to these weights. 
Neurons are still represented using full precision (FP32). The 
reported ImageNet accuracy results on Ternary DNNs have been 
very compelling. The earlier paper [4] in May 2016 reported only 
1.8% top-5 accuracy degradation on Ternary ResNet-18 relative 
to full precision ResNet-18 (i.e., 86.2% Ternary vs. 88% full 
precision accuracies). The very recent work [5] in September 
2016 reports only 0.64% accuracy degradation for ResNet-152 
(i.e., 93.2% ternary vs. 93.84% full precision). This work also 
reports accuracy for ternary ResNet-50, which is within 1% 
accuracy of full precision ResNet-50. We focus on ResNet-50 
here, since its accuracy is close to ResNet-152 (within ~1.2%), but 
requires much less computation.  

 

Figure 11. Sparsity of Ternary ResNet-50. The x-axis shows 
the different layers of ResNet-50. The y-axis shows 

percentages of zeros for each layer. Sparsity results for the 
ternary weights and runtime neuron values are provided. 

 

Figure 12. FPGA accelerator speedups from exploiting 
sparsity for each Ternary ResNet-50 layer. E.g., 1.5 means 

that enabling sparse support to skip zeros leads to 1.5x faster 
run (in cycle count) over normal dense processing. 

5.2 Software Reference and Sparsity Study 
Our software reference is based on the work in [5], which is 

built on top of the Torch framework for ResNet [20]. We ran our 

own experiments on ImageNet dataset with Ternary ResNet. 
Indeed, we were able to obtain accuracies mentioned earlier.  

First, to understand the opportunity for sparsity exploitation, 
we collected average sparsity data for the resulting weights from 
training with Ternary ResNet-50. Since ResNet uses ReLU as the 
activation function, we also report runtime sparsity at the input 
neuron values. Figure 11 shows the results.  

As Figure 11 shows, the sparsity varies layer by layer. On a 
weighted average across the layers, the weights are 51% sparse 
and the neurons are 60% sparse. This means, that in the upper 
bound, there can be 70-80% overall sparsity across both the 
weights and neurons. In an ideal case, if it is possible to avoid the 
70-80% unnecessary zero computations with perfect efficiency, 
the upper bounds for speedups are 3.3x-5x. While this is 
promising, in practice the actual speedups depend on whether the 
compute platform can avoid these zero computations efficiently. 

5.3 FPGA Evaluation 
We used the hardware template detailed in Section 3 and 

considered several possible instances of RTL implementations for 
Ternary ResNet-50. In particular, we enabled customizations for 
ternary DNNs discussed in Section 3.2.4. 

First, we customized for 2bit ternary data format, and 
replaced multiplication with a sign bit manipulation. Thus, our PE 
only contains a floating-point accumulator. Nevertheless, a single 
Stratix 10 DSP block contains an FP32 multiplier and an FP32 
adder. Even though we are not using the multiplier, we still have 
to use an entire DSP for our accumulator, so we do not gain any 
DSP savings in this case. We do obtain ALM and M20K savings 
from having very compact 2-bit ternary data representation.  

Second, we evaluated different configurations for zero 
skipping support. Generally, there is a tradeoff between the 
aggressiveness of our sparse data scheduler to skip zero 
computations and the FPGA resources needed and frequency. A 
more aggressive sparse scheduler can look further ahead to a 
larger set of weights and/or neurons, and identify and skip larger 
portions of zeros dynamically. However, it costs more resources 
and may impact frequency if it introduces data dependencies.  

For this study, we chose a simper design more amenable to 
frequency optimizations. Specifically, we opted for a less 
aggressive but simpler sparse scheduler, at the expense of less 
opportunity to skip zero computations. Furthermore, instead of 
having the sparse scheduler skip zeros on both neurons and 
weights, we chose to skip only zero neurons, as they use wider 32-
bit data type and sparser than the weights. Zero skipping only on 
neurons lets us use only one of the “Sparse Mgt” unit outside of 
the GEMM unit (i.e., inside “ODM” in Figure 4(a)) and to 
simplify “zero-skip scheduler” inside each PE. Based on ResNet-
50 layer dimensions, we customize our DNN accelerator with 
GEMM units with 4x8 PEs and 8 FMA units/PE.  

Figure 12 shows our simulation results. We get only ~2x 
reduction in cycle count from skipping zeros, even though as 
stated earlier the upper bounds for exploiting sparsity are 3.3x-5x 
speedups. More comprehensive design exploration is needed to 
find an optimal design point. We leave this for a future study. 

Because we exploit sparsity less aggressively, we ended up 
with a simpler more regular design that is amenable to frequency 
optimizations. The design runs at 450 MHz, even without 
explicitly optimizing for HyperFlex yet. Due to time constraints, 
we are not yet able to fully optimize our design. We are also using 



Quartus Early Beta release for Stratix 10. Even though this is the 
latest version available to us at present, it may or may not reflect 
the synthesis result of more mature future releases of Quartus for 
Stratix 10. Due to this, we made projections with conservative, 
moderate, and aggressive optimization targets. Our conservative 
estimate targets 450MHz, which we currently already achieved 
without explicit optimizations for HyperFlex. HyperFlex has been 
reported to enable much higher frequency (e.g., 896MHz in 400G 
Ethernet CRC assembly [22]), so we use 600MHz and 750MHz as 
our moderate and aggressive projections. 

 

Figure 13. Ternary ResNet-50 results for ImageNet problem 
size, on Titan X GPU and Stratix 10 FPGA. For Stratix 10, we 
provide conservative, moderate, and aggressive estimates. For 

GPU, we provide the best achieved performance on Torch 
among the various settings we experimented with. Our GPU 
result is better than existing performance number [20,21]. 

5.4 GPU Evaluation 
We ran Torch for ImageNet and Ternary ResNet-50 on a 

Titan X Pascal GPU to collect performance numbers. We tried 
multiple batch sizes, and found that batch of 64 gives the best 
performance. We used cuDNN 5 with the most aggressive 
performance setting. cuDNN not only supports highly optimized 
matrix operations as in cuBLAS, but it also supports many other 
optimizations, including mathematical transforms such as 
Winograd [23]. cuDNN chooses the best approach to compute the 
DNN workload given to it. Since our FPGA does not currently 
support all the optimizations in cuDNN (including Winograd), we 
believe that we are allowing the GPU to do the best it can do 
given its current software ecosystem. This includes using 
algorithm/mathematical optimizations that our FPGA design does 
not currently support. 

To obtain an aggregated performance number, we collected 
execution times for many samples. We excluded samples that run 
much slower than others since they are not compute bound (i.e., 
they have non-trivial data access time). We average 200 compute-
bound samples to get our GPU result. Overall, we found that the 
achieved Ternary ResNet performance is 6.6 TFLOP/s on 
average, much less than the Titan X theoretical peak of 11 
TFLOP/s.  

We sanity checked our result against other ResNet GPU 
performance numbers we could find [20,21]. [21] reported 
execution time for ResNet-50 using the same Torch framework 
we use, on a Titan X Pascal. Our achieved performance (TOP/sec) 
is ~3x better than what was reported there. We notice that [21] 
used batch 16 and did not use cuDNN, which may explain the 
performance gap. There is also a ResNet-50 execution time 
reported in [20], but it was for a Titan X Maxwell. We scaled their 

number up to Pascal by accounting for increased performance 
(i.e., 11 TFLOP/s peak in Titan X Pascal vs 7 TFLOP/s Titan X 
Maxwell). Our achieved performance is ~50% better than their 
reported number projected up for Pascal. Hence, we believe that 
our GPU achieved performance number is quite reasonable. 

Finally, we also attempted to take advantage of ternarization 
in the GPU compute kernel, by avoiding multiplication and 
instead using a sign bit flip. However, after further study, we 
believe that the GPU is not able to take advantage of this 
optimization. This is because instruction throughput of 32-bit 
bitwise operations (e.g., AND, OR, XOR) is the same as the one 
of 32-bit floating point operations. For example, Titan X Pascal 
which supports CUDA Compute Capability 6.1 has the same 
throughput of 128 operations per cycle per multiprocessor for 
both operations. Therefore, either a multiply operation or a sign 
bit flip operation would still require a single instruction in GPU, 
with the same throughput. Hence, using a sign bit flip instead of a 
multiply would not improve GPU performance. Therefore, we 
opted to represent ternary value as float and used cuDNN. 

5.5 FPGA vs. GPU Results 
The performance and performance/watt of Stratix 10 FPGA 

and Titan X GPU for ResNet-50 is shown in Figure 13. To 
calculate throughput (TOP/sec), we divide the total operations in 
ResNet-50 by the execution time.  

Even for the conservative performance estimate, Stratix 10 is 
already ~60% better than achieved Titan X performance. The 
moderate and aggressive estimates are even better, delivering 2.1x 
and 3.5x speedups over Titan X. Interestingly, the Stratix 10 
aggressive 750MHz estimate can deliver 35% better performance 
compared to theoretical peak performance of Titan X. In terms of 
performance/watt, Stratix 10 delivers much better improvements 
over Titan X, compared to pure performance, from 2.3x to 4.3x 
across conservative to aggressive estimates.  

We still need to do real measurements on the actual Stratix 
10 FPGAs when they become commercially available, to verify 
the estimates presented here. However, these estimated results are 
very exciting evidence that next-generation Stratix 10 FPGA can 
potentially deliver leadership performance over the state-of-the-art 
high-performance GPU on next-generation DNNs. 

6. DISCUSSION: OTHER DNN TRENDS 
DNNs are rapidly advancing, and this paper does not cover 

all the DNN trends. Below are two other emerging DNN trends 
not studied in this paper, which we expect to be good for FPGAs. 

Mathematical Transforms (e.g., Winograd). The first trend 
is in optimizations using mathematical transforms. In particular, 
Winograd transformation [23] has been shown to be amenable to 
small DNN filters (e.g., 3x3) that are common in state-of-the-art 
DNNs. Fast Fourier Transforms (FFTs) have also been shown to 
be amenable for larger filters (5x5 and above), which are still used 
in some DNNs. FPGAs have been known to be an efficient 
platform for FFTs (e.g., [24]), and one could expect that they 
would be well-suited for Winograd transformations as well. These 
transforms are often computable in a streaming data fashion and 
involve an arbitrary set of mathematical operators. And, there are 
many possible transformation parameters that lead to different 
compositions of mathematical operators. Such computation 
properties (arbitrary composition of operations on streaming data) 
are likely to be amenable to FPGAs.  



Compression. There are various compression techniques 
that have been proposed for DNNs, such as weight sharing [6], 
hashing [25], etc. These techniques require find-grained data 
accesses, with indexing and indirection on lookup tables, which 
an FPGA fabric is particularly good at.  

7. RELATED WORK 
To the best of our knowledge, this is the first paper that 

projects performance of DNNs on Stratix 10, provides comparison 
against the latest Titan X Pascal GPU, and offers comprehensive 
coverage for many emerging DNNs (i.e., sparse, binary, ternary). 

FPGA Accelerators. There has been a plethora of prior 
work focusing on FPGA-based deep learning accelerators (e.g., 
[10,11]). However, these works target older generation FPGAs, 
with many of them targeting embedded FPGA platforms. In 
contrast, this paper projects deep learning acceleration on state-of-
the-art Stratix 10 FPGA for high-performance applications. 
Furthermore, prior works do not provide comparison to the latest 
high-performance Titan X Pascal GPU. And, their accelerators do 
not cover all of the variety of emerging DNN optimizations that 
we evaluate here. 

ASIC Accelerators. Aside from FPGA acceleration, there 
have also been many works focusing on ASIC accelerators for 
deep learning (e.g., [8,9,26]). Most of these studies focus on 
“classic” DNNs that rely on dense matrix computation. There are 
more recent ASIC accelerators [8,9] that have been optimized for 
sparse DNNs and compact data types. Unlike these works, we 
focus on FPGAs in this paper. 

FPGA vs. GPU Studies. Finally, there are existing studies 
that compare FPGAs against GPUs. The work in [27] compares 
BLAS matrix operations among CPU, FPGA, and GPUs. The 
work in [28][30] compare Neural Networks implemented on CPU, 
FPGA, GPU, and ASIC. However, these studies target older 
generation FPGAs and GPUs, while we target the latest Stratix 10 
FPGA and Titan X Pascal GPU. Moreover, these prior studies do 
not focus on all emerging DNNs that are studied in this paper. 

8. CONCLUSION 
Can FPGAs beat GPUs in performance for next-generation 

DNNs? Our evaluation of a selection of emerging DNN 
algorithms on two generations of FPGAs (Arria 10 and Stratix 10) 
and the latest Titan X GPU shows that current trends in DNN 
algorithms may favor FPGAs, and that FPGAs may even offer 
superior performance.  We created a customizable DNN hardware 
template for FPGAs and used this to study various GEMM 
operations for next-generation DNNs on FPGAs and GPUs. Our 
results show that projected Stratix 10 performance is 10%, 50%, 
and 5.4x better in performance (TOP/sec) than Titan X Pascal 
GPU on GEMM operations for pruned, Int6, and binarized DNNs, 
respectively. We also presented a case study on Ternary ResNet, 
which relies on sparse GEMM on 2-bit weights, and achieved 
accuracy within ~1% of the full-precision ResNet. On Ternary-
ResNet, the Stratix 10 FPGA is projected to deliver 60% better 
performance over Titan X Pascal GPU, while being 2.3x better in 
performance/watt. Our results indicate that FPGAs may become 
the platform of choice for accelerating DNNs. 
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