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Abstract
This paper presents GSCore, a hardware acceleration unit
that efficiently executes the rendering pipeline of 3D Gauss-
ian Splatting with algorithmic optimizations. GSCore builds
on the observations from an in-depth analysis of Gaussian-
based radiance field rendering to enhance computational
efficiency and bring the technique to wide adoption. In do-
ing so, we present several optimization techniques, Gaussian
shape-aware intersection test, hierarchical sorting, and sub-
tile skipping, all of which are synergistically integrated with
GSCore. We implement the hardware design of GSCore, syn-
thesize it using a commercial 28nm technology, and evaluate
the performance across a range of synthetic and real-world
scenes with varying image resolutions. Our evaluation re-
sults show that GSCore achieves a 15.86× speedup on av-
erage over the mobile consumer GPU with a substantially
smaller area and lower energy consumption.

CCS Concepts: • Computer systems organization→ Ar-
chitectures; • Computing methodologies → Rendering.

Keywords: Accelerators, Gaussian Splatting, Rendering

ACM Reference Format:
Junseo Lee, Seokwon Lee, Jungi Lee, Junyong Park, Jaewoong
Sim. 2024. GSCore: Efficient Radiance Field Rendering via Archi-
tectural Support for 3D Gaussian Splatting. In 29th ACM Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Volume 3 (ASPLOS ’24), April 27-May
1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3620666.3651385

1 Introduction
Recent advances in graphics rendering that build on machine
learning and radiance fields are gaining significant atten-
tion due to their outstanding quality in synthesizing photo-
realistic images from novel viewpoints [4, 15, 25, 33, 36].
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Xavier NX (6.4 FPS)
PSNR: 24.17dB

GSCore (91.2 FPS)
PSNR: 24.26dB

Figure 1. Rendering with 3D Gaussian Splatting [25] on Jetson
Xavier NX and GSCore. The rendered image for GSCore is obtained
from our simulator. The model is trained for 30K iterations.

While traditional 3D scene reconstruction methods often
struggle to capture the intricate geometric and spatial details
of scenes, modern radiance field-based techniques, such as
Plenoxels [15] and NeRF [33], enable us to capture the fine
details in 3D scenes through the use of continuous volumetric
radiance fields and differentiable rendering primitives.
3D Gaussian Splatting [25] is a recent breakthrough that

offers a promising solution for representing the radiance
field. Unlike Neural Radiance Fields (NeRF), where scenes
are implicitly represented, Gaussian Splatting makes use of
explicit rasterization primitives (i.e., Gaussians), thereby en-
abling much faster rendering than NeRF, along with scene
editing properties. As such, the technique already starts be-
ing supported by a variety of popular rendering engines,
including Unity [49], Unreal [16], and Blender [13].

While 3D Gaussian Splatting offers remarkable rendering
performance with better image quality than prior methods,
achieving real-time rendering for several important domains
today, such as virtual reality and mobile computing, remains
challenging, as depicted in Figure 1. For instance, the Ocu-
lus Quest 2, which features the Adreno 650 GPU, is only
marginally better than the Jetson Xavier NX in Figure 1.
Given that the performance of mobile platforms is primar-
ily constrained by their power budget, it is unlikely that
mobile GPUs will become as powerful as desktop or server-
class GPUs, such as NVIDIA RTX 3090 or A100. This hinders
us from extending the benefits of the technique to broader
computing domains.

In this work, we begin by investigating the Gaussian ren-
dering pipeline and conducting an in-depth characterization
of the technique on today’s computing platform to under-
stand its architectural implications. Our analysis shows that
Gaussian sorting and rasterization are two key contributors
to the rendering time of Gaussian Splatting. Further investi-
gations, however, reveal that the performance bottlenecks
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are partially attributed to the naïve intersection test between
Gaussians and pixels in the preprocessing step. In addition,
we observe that a significant number of Gaussians do not ac-
tually contribute to the pixel color during the alpha blending
process due to the nature of Gaussians, early termination,
and tile-based lockstep execution on GPUs.
Based on our observations, we propose the optimization

techniques—Gaussian shape-aware intersection test, hierar-
chical sorting, and subtile skipping—to streamline the render-
ing pipeline of Gaussian Splatting, which we discuss in Sec-
tion 4. Alongside the optimizations, we present a hardware
acceleration unit called Gaussian Splatting Core (GSCore),
which specializes in Gaussian-based radiance field rendering.
GSCore leverages our key observations to efficiently per-
form Gaussian sorting and rasterization, which are two time-
consuming operations, and delivers substantial improve-
ments in performance and energy efficiency over today’s
mobile GPUs.
We implement GSCore using SystemVerilog and synthe-

size it with a commercial 28nm technology. In addition, to
evaluate its performance, we implement a cycle-level simu-
lator that models the hardware components of GSCore with
a detailed off-chip memory model. Our simulator also pro-
duces functional outputs (i.e., pixel colors), which we use
to examine the rendered image. We evaluate GSCore across
synthetic and real-world scenes that are widely used in the
graphics community. Our results show that GSCore achieves
a 15.86× speedup on average over the representative mobile
Volta GPU, with a small area budget of 3.95mm2.

In summary, this paper makes the following contributions:

• To our knowledge, this is the first work to provide
an in-depth analysis of Gaussian-based radiance field
rendering on today’s computing platforms and identify
the root causes of performance inefficiencies.

• We propose optimization techniques to streamline the
Gaussian rendering pipeline and perform volume ren-
dering more efficiently than general-purpose comput-
ing platforms, complemented by architectural support.

• We present GSCore, a hardware acceleration unit tai-
lored to the needs of Gaussian-based radiance field ren-
dering. GSCore enables real-time rendering of novel
view synthesis with substantially small area and en-
ergy consumption, thereby extending the benefit of 3D
Gaussian Splatting across various computing domains.

2 Background
In this section, we first provide the background of novel
view synthesis and modern volume rendering techniques
that build on radiance field methods. We then introduce 3D
Gaussian Splatting, the state-of-the-art radiance field render-
ing technique that outperforms other methods in terms of
rendering quality and performance.

2.1 Volume Rendering with Radiance Fields
3D Scene Reconstruction and Rendering. Traditional 3D
scene reconstructions rely on explicit representations such as
manually-crafted meshes and point clouds. The emergence
of Structure-from-Motion (SfM) [46] paves the way for an
entirely new approach, which enables the synthesis of novel
views using a collection of photos. Using SfM, one can gener-
ate 3D point clouds from a set of 2D images, which are then
used to create a mesh structure. With the mesh representa-
tion, one can generate a new scene from any viewpoint.
Neural Radiance Fields (NeRF).While traditional scene
reconstruction methods produce reasonable images from
novel viewpoints, they typically struggle to completely re-
cover from unreconstructed or complex regions. Neural Ra-
diance Fields (NeRF) [33] has recently emerged as a promis-
ing method, which allows us to synthesize novel views of
complex 3D scenes using a partial set of 2D images and neu-
ral networks. In NeRFs, scenes are represented implicitly
through the weights of multi-layer perceptrons (MLPs) that
represent the radiance field.1 The MLP weights are trained
directly with a sparse set of 2D images (without using SfM),
and the learned weights are used for rendering an image
from a specific viewpoint.
The NeRF model generally comprises two MLPs: one for

view-independent density and another for view-dependent
color. To render an image, we first cast rays from the origin
of a viewpoint to each pixel and sample the points along
the rays. We then feed the encoded features of the sampled
points into the MLPs to obtain the density (𝜎𝑖 ) and color (c𝑖 )
values for each point. The density and color values of all
sampled points are subsequently accumulated through the
volume rendering (𝛼-blending) process to produce the pixel
color (C), as shown in Equation 1:

C =

N∑︁
i=1

Ti𝛼ici, (1)

where Ti = Πi−1
j=1 (1 − 𝛼j) and 𝛼i = 1 − exp(−𝜎i𝛿i). Transmit-

tance Ti represents the probability of the ray reaching a
point without encountering any obstacles, which is calcu-
lated using the density (𝜎𝑖 ) and the distance between adjacent
samples (𝛿𝑖 ). While NeRF offers impressive rendering quality,
it is computationally expensive due to the use of MLPs for
every sampled point, which is a challenge that several recent
works aim to address [7, 17, 36]. In addition, the implicit
representation makes it difficult to edit the scene.

2.2 3D Gaussian Splatting
3D Gaussian Splatting [25] is a recent breakthrough that
achieves both outstanding rendering quality and perfor-
mance, along with scene editing capability. It achieves this by
leveraging rasterization primitives that are also differentiable
1The radiance field is defined by the radiance at every point and direction
in 3D space.
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Figure 2. Radiance field rendering pipeline for 3D Gaussian Splatting.

Table 1. Parameters for 3D Gaussian.

Parameter Symbol Size Note

Position (mean) 𝜇 3 3D vector (x, y, z)
Scale 𝑠 3 3D vector (x, y, z)
Rotation (quaternion) 𝑞 4 scalar + 3D vector (i, j, k)
Opacity 𝑜 1 scalar
SH coefficients 𝑠ℎ 48 4 bands of SH; (1+3+5+7)×3
Total (per Gaussian) 59

unlike meshes or points. In 3D Gaussian Splatting, a scene
is represented by a dense set of 3D anisotropic Gaussians,
instead of neural networks, each of which has the properties
of a position (mean) vector 𝜇, a 3×3 covariance matrix Σ,
opacity 𝑜 , and spherical harmonic (SH) coefficients 𝑠ℎ that
represent the directional appearance component (color) of
the radiance field.2

To begin with, a sparse set of points is first constructed in
3D space (i.e., a point cloud) from the 2D images using SfM.
Each SfM point is then assigned to a 3D Gaussian, forming an
initial sparse set of Gaussians. The features of each Gaussian
are learned during the training process using conventional
gradient-based algorithms in machine learning. It is noted
that scenes are explicitly represented by 3D Gaussians, lead-
ing to much faster rendering than NeRFs while preserving
the advantages of volume rendering.

During training, small Gaussians in under-reconstructed
regions are cloned, while large Gaussians with high variance
are split into smaller ones. This allows for effectively repre-
senting the 3D geometry with the control of the Gaussian
density. Also, instead of directly optimizing the covariance
matrix Σ, the matrix is decomposed into a rotation matrix
(𝑅) and a scaling matrix (𝑆), each of which is independently
optimized. Then, the covariance matrix is computed using
these two matrices; Σ = (𝑅𝑆) (𝑅𝑆)𝑇 . This facilitates optimiz-
ing the covariance features and ensures that the covariance

2Spherical harmonics (SH) are a set of functions defined on the surface of a
sphere, which are widely used for representing view-dependent radiance in
computer graphics [43].

matrix becomes positive semi-definite.3 Table 1 shows the
parameters used for each 3D Gaussian.

Normally, a 3D Gaussian is a continuous function defined
throughout the entire 3D space. To improve the effective-
ness of training and rendering, however, each 3D Gaussian
is treated as an ellipsoid (i.e., a closed surface) in Gaussian
Splatting; that is, a set of discrete ellipsoids represents the
3D scene. When the viewpoint and its image plane are given,
the ellipsoids are then projected (i.e., “splatted”) onto the 2D
plane as ellipses (2D splats). During rendering, we accumulate
the color and density of the splats that intersect the pixels. It
is noted that NeRFs and Gaussian Splatting share the same
volume rendering equation (Equation 1). In the following sec-
tion, we discuss the rendering pipeline of Gaussian Splatting,
which our work targets for optimization.

3 Motivation
In this section, we begin by explaining the rendering pipeline
of the 3D Gaussian splatting technique. We then identify the
key operations that contribute to the overall rendering time
and discuss our observations, which motivate our work.

3.1 Radiance Field Rendering with 3D Gaussians
As discussed in Section 2.2, 3D scenes are reconstructed with
a number of Gaussians (𝑁 ), each of which has the features
that are learned during training. Using these Gaussians, we
render a 2D image from any viewpoint, which is largely di-
vided into four steps: Frustum Culling, Feature Computation,
Gaussian Sorting, and Rasterization (Volume Rendering), as
illustrated in Figure 2.
Frustum Culling. To begin with, we first eliminate the
Gaussians that are invisible from the camera viewpoint, a
process known as frustum culling. This involves iterating
through all 𝑁 Gaussians that represent the radiance field
and checking whether they are inside the viewing frustum.
During this step, only the mean position (𝜇) of each Gaussian

3The covariance matrix of a multivariate Gaussian must be positive semi-
definite.
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is used for culling after obtaining its depth,4 so there is no
need to read all Gaussian features from off-chip memory.
The depth (𝑑) of a Gaussian refers to the 𝑧 value of its mean
position in the 3D view space when the camera is positioned
at the origin with its viewing direction aligned along the 𝑧-
axis. Note that the number of Gaussians to process is reduced
to 𝑁 ′ after frustum culling.
Feature Computation. Once we obtain (potentially) visible
Gaussians (𝑁 ′) for a given viewpoint, we now perform fea-
ture computation to obtain the features used for the rest of
the pipeline. This step involves both projecting a 3D Gauss-
ian onto the 2D image space and obtaining an RGB color
(𝑐) of the Gaussian. For the projection process, we first de-
rive a covariance matrix (Σ) from a scaling (𝑠) vector and a
quaternion (𝑞). Then, the Gaussian is projected onto the 2D
plane by transforming the 3D mean (𝜇) and covariance (Σ)
into their 2D counterparts (𝜇′ and Σ′).

After the projection, we also set a bounding rectangle for
the projected Gaussian (i.e., 2D splat) while computing its
extent to determine whether it overlaps with the screen. For
the splats that overlap with the screen, the color is computed
using SH coefficients (𝑠ℎ) and a viewing direction (𝑑𝑖𝑟 ). Ini-
tially, the feature dimension of each Gaussian is quite large
(i.e., 59), primarily due to the large number of SH coefficients.
This step greatly reduces the feature dimension because the
color is now represented as a 3D RGB vector, which helps
reduce memory bandwidth consumption when performing
volume rendering.
Gaussian Sorting. Once we compute the new features for
each Gaussian, we need to obtain a sorting order of the Gaus-
sians. This is necessary because volume rendering accumu-
lates the pixel color by traversing the Gaussians front-to-
back that overlap the pixel, as shown in Equation 1. This
step sorts the Gaussians with respect to the depth (𝑑) for ras-
terization. Given that the number of Gaussians (𝑁 ′) can be
hundreds of thousands or millions, this sorting process takes
up a non-negligible portion of rendering time, even when
using a well-optimized parallel sorting implementation on
GPUs (e.g., a radix sort in the NVIDIA CUB library).
Rasterization. Lastly, we perform rasterization (volume
rendering) using the sorted Gaussians to obtain pixel colors.
The volume rendering process is inherently parallel because
the color computation for each pixel is independent of the
others. Additionally, the same volume rendering equation
employed in other methods [15, 33, 36] is also used in this
step (i.e., Equation 1), as they essentially share the same im-
age formation model. Thus, optimization techniques, such as
early ray termination used in volumetric ray-marching [36],
can also be employed to reduce the rendering time.

For an effective use of hardware resources, the state-of-art
GPU implementation [25] employs conventional tile-based

4To be precise, only near-plane culling is performed in this step; other Gaus-
sians outside the frustum are discarded after image-space projection [25].

0

20

40

60

80

100

7K 30K 7K 30K 7K 30K 7K 30K

Train Truck Playroom Drjohnson

Pe
rc

en
ta

ge
 (%

)

Rasterize
Gaussian Sort
Preprocess

0

2

4

6

8

10

7K 30K 7K 30K 7K 30K 7K 30K

Train Truck Playroom Drjohnson

R
en

de
rin

g 
Ti

m
e 

(m
s)

0

20

40

60

80

100

7K 30K 7K 30K 7K 30K 7K 30K

Train Truck Playroom Drjohnson

Pe
rc

en
ta

ge
 (%

)

Rasterize
Gaussian Sort
Preprocess

0

100

200

300

7K 30K 7K 30K 7K 30K 7K 30K

Train Truck Playroom Drjohnson

R
en

de
rin

g 
Ti

m
e 

(m
s)

(b) RTX 3090

(a) Xavier NX

Figure 3. Rendering time breakdown. Each scene is trained with
7K and 30K iterations. We render an image for each scene from a
single viewpoint. See Table 3 for the details of each scene.

rendering (TBR) by dividing the image into several tiles, each
of which contains 16×16 pixels. Each thread block then in-
dependently renders a 16×16-pixel tile (i.e., 256 threads per
256 pixels) with early termination.

The rasterization process can be largely divided into five
steps: Gaussian fetching, 𝛼-computation, 𝛼-pruning, early
(ray) termination, and𝛼-blending.We first fetch the Gaussian
features and compute the 𝛼 value using Equation 2:

𝛼𝑖 = 𝑜𝑖 ∗ exp(−1
2
(𝑝′ − 𝜇′)𝑇 Σ′−1 (𝑝′ − 𝜇′)), (2)

where 𝑝′ is the pixel position and 𝑜𝑖 is the opacity of the
Gaussian. The 𝛼-computation consumes most of the exe-
cution time in rasterization as it involves multiple floating-
point computations for vector and exponential operations.
In the 𝛼-pruning and early termination steps, we skip the
Gaussian not to be used for the transmittance and pixel color
if 𝛼 is less than a pre-defined threshold 𝜖 (e.g., 𝜖= 1

255 in [25])
for numerical stability. Additionally, we check whether the
transmittance (𝑇𝑖 ) falls below a threshold (e.g., 10−4 in [25])
for early termination. If not, we accumulate the color of
the Gaussian to the pixel color in the 𝛼-blending step us-
ing Equation 1. In the following sections, we investigate the
performance aspects of these steps in the rendering pipeline
and discuss our observations and optimization opportunities.

3.2 Performance Characterization
To understand the rendering performance of Gaussian Splat-
ting, we run the state-of-the-art implementation [25] with
several real-world scenes on the JetsonXavier NX [39], which
is representative of edge platforms for vision systems [2], as
well as on a desktop-class RTX 3090 GPU.

Figure 3 decomposes the rendering time into three major
components: preprocessing (which combines frustum culling
and feature computation), Gaussian sorting, and rasteriza-
tion. The results show that rasterization and Gaussian sort-
ing are two major performance bottlenecks across different
scenes and platforms, collectively occupying around 80% of
rendering time. For the same scene and computing platform,
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training with 30K iterations generally leads to more Gaus-
sians than with 7K iterations due to the densification process
(i.e., splitting/cloning Gaussians), as discussed in Section 2.2.
As such, the rendering time for the 30Kmodel generally takes
longer than that of the 7K model for the same viewpoint.
The results further demonstrate that today’s edge de-

vices would still suffer from slow rendering time. Although
the desktop-class GPU offers outstanding rendering perfor-
mance (> 100 FPS), the edge platform renders an image at
only a few frames per second (FPS). The performance of
mobile and edge platforms is primarily dictated by their
power budget, which is challenging to increase, particularly
for battery-powered devices. This motivates us to perform
Gaussian-based rendering more efficiently to bring the tech-
nique to wide adoption. In doing so, instead of directly accel-
erating sorting and rasterization steps, we carefully investi-
gate the root cause of the performance bottlenecks, which
we discuss in the following section.

3.3 Opportunities for Efficient Gaussian Rendering
We observe that there are several inefficiencies in the state-
of-the-art Gaussian-based rendering pipeline.
Observation I: UnnecessaryAssignment ofUnusedGaus-
sians to Tiles. Figure 4 shows the number of Gaussians as-
signed to tiles after frustum culling and feature computation,
along with the actual number of Gaussians processed for
rendering in each tile. In Gaussian Splatting, object shapes
are approximated using a set of Gaussians. Thus, it is neces-
sary to identify the Gaussians to process for each tile (i.e.,
16×16 pixels) for rasterization. In the state-of-the-art imple-
mentation, this is achieved by performing an intersection
test between the tiles and Gaussians using an axis-aligned
bounding box (AABB) during the preprocessing step. Note
that the same Gaussian can be assigned to multiple tiles if it
overlaps with a large number of pixels.
While the intersection test with AABBs simplifies the

assignment of Gaussians to tiles, which helps reduce the
preprocessing time as shown in Figure 3, we observe that
it results in a notably high number of false positives. To
reduce the computation overhead of obtaining the AABB
of a Gaussian, the original algorithm sets the AABB as a
square that circumscribes a circle with a radius equal to the
semi-major axis of an ellipse. This is computationally cheap
because it only requires the center point of a Gaussian, which

Table 2. Ratio of unused Gaussians in tiles due to early termination.

Ratio Train Truck Playroom Drjohnson

Avg. 54.59% 29.24% 25.19% 18.50%
Max. 96.57% 96.20% 98.24% 90.39%

we already know (i.e., a Gaussian mean), and the radius
of the major axis. However, the majority of the projected
Gaussians (i.e., splats) are anisotropic (i.e., highly skewed
along the major axis), so the AABB leads to considerable
empty space between the ellipse and the bounding box. This
in turn results in a large number of tiles being erroneously
assessed as intersected (i.e., false positive) despite no actual
intersection with the Gaussian.
Consequently, this approach significantly increases the

number of Gaussians to process per tile for the subsequent
steps of the rendering pipeline,5 adversely affecting both sort-
ing and rasterization time due to unnecessary computation.
Considering that these two steps are the key performance
bottleneck in the rendering pipeline, avoiding the assign-
ment of unused Gaussians to tiles can substantially reduce
the amount of work for each tile and thus rendering time.
Section 4.1 discusses the performance impact of the inter-
section test in Gaussian Splatting and presents our idea of
opportunistically performing a more strict intersection test.
Observation II: Unnecessary Sorting for Unused Gaus-
sians. Table 2 shows the percentage of unused Gaussians
resulting from early termination after their assignment to
tiles. As discussed in Section 3.1, the transmittance (𝑇 ) is
computed during volume rendering, and if the value falls
below a threshold, we do not need to further accumulate the
colors of the Gaussians after the current one; this resembles
early ray termination in NeRFs.

We observe that a large number of Gaussians assigned to
each tile are not actually processed due to early termination
in the rasterization step. This implies that there is no need to
spend time precisely sorting all the Gaussians, as some will
not be ultimately used in the subsequent rasterization. Given
that Gaussian sorting consumes a non-negligible amount of
time in the rendering pipeline, which would become even
greater when accelerating the rasterization step, avoiding
unnecessary sorting could help reduce rendering time. Sec-
tion 4.2 discusses our idea of exploiting this opportunity,
which not only avoids unnecessary sorting but allows for
further hiding the sorting overhead by breaking the serializa-
tion of Gaussian sorting and rasterization and overlapping
their execution.
Observation III: Ineffective Computation in Rasteriza-
tion. Figure 5 shows the percentage of Gaussians that actu-
ally contribute to pixel colors during the rasterization pro-
cess. In the tile-based execution, a thread block is assigned to
5The Gaussians assigned to tiles due to false positives will not ultimately
be rasterized during alpha computation.
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each tile, and all threads in the thread block work on the same
Gaussian while iterating through the Gaussians assigned to
the tile one by one. Although this greatly helps reduce ren-
dering time by avoiding the overhead of per-pixel Gaussian
sorting as well as thread divergence, as mentioned in [25], it
unfortunately leads to the majority of threads performing
ineffective computation to compute the 𝛼 value and checking
whether the Gaussian under process contributes to its own
pixel color (although it turns out it does not).

As shown in the figure, the number of Gaussians that con-
tribute to the pixels is significantly low, which implies that
many threads compute something ineffective, thereby wast-
ing compute cores. Ideally, wewould like tomanage per-pixel
(per-thread) information regarding Gaussians, but this is not
likely practical due to the overhead of maintaining per-pixel
data structures and the lockstep nature of GPU execution.
Instead, our key idea is to divide each tile into several subtiles
and maintain lightweight per-subtile information about the
pixel influence of the Gaussian under process within a tile.
Section 4.3 discusses this middle ground approach, which
helps reduce the amount of ineffective computation in our
volume rendering core.

4 Optimizing Gaussian Splatting Pipeline
By leveraging the observations and opportunities from our
analysis, we present the techniques to streamline the Gauss-
ian rendering pipeline, which we employ in our architecture.

4.1 Gaussian Shape-Aware Intersection Test
In the preprocessing step, we need to identify the tiles that
eachGaussian intersects for rasterization. As discussed in Sec-
tion 3.3, however, using a simple intersection test results in
a high number of false positives. This not only increases the
Gaussian sorting overhead but prolongs the rasterization
time due to unnecessary alpha computation of Gaussians
that do not actually influence the pixels.
To reduce the false positives of the intersection test, we

consider employing a more fitted bounding box that aligns
well with the anisotropic nature of Gaussians, which is an
oriented bounding box (OBB) [19]. Figure 6 compares the orig-
inal AABB-based intersection test with the OBB-based one.
For simplicity in computation, the state-of-the-art implemen-
tation sets an AABB using a circle with a radius equivalent to
the length of the semi-major axis of each Gaussian. However,
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intervalOBB
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Figure 6. (a) Comparison of Gaussian-tile intersection tests using
AABB and OBB. (b) OBB intersection test.

this method could falsely mark a large number of tiles as
intersected although they are not, as depicted in Figure 6(a);
for instance, 75% of tiles are incorrectly assessed as inter-
sected in the figure. In contrast, the OBB, with the flexibility
of its edges not constrained to be parallel to the coordinate
axes, sets a tighter bounding box, especially when Gaussians
become more anisotropic.

Assigning Gaussians to tiles using AABBs is computation-
ally inexpensive, as we can directly identify all intersecting
tiles by examining the top-left and bottom-right vertices of
the AABB rectangle. In contrast, while a more fitted bound-
ing box, such as OBBs, effectively reduces false positives,
it is more costly due to the need of individually checking
each tile with the bounding box for intersection. For exam-
ple, Figure 6(b) illustrates the procedure of an OBB-based
Gaussian-tile intersection test using the Separating Axis The-
orem (SAT) [19]. SAT determines intersection by examining
overlaps after projecting a tile and an OBB onto potential
separating axes. In the figure, for each of the four axes (i.e.,
①–④), we check if two projections (intervals) overlap. If
an overlap occurs on every axis, we can conclude that the
Gaussian intersects the tile.

Our key insight is that not all Gaussians need to be checked
with a more strict intersection test; some can effectively use
a simple bounding box. Moreover, an AABB intersection test
is needed beforehand, even when employing an OBB-based
test to identify candidate tiles. Hence, we opportunistically
apply the OBB intersection test based on the characteristics
of each Gaussian shape. We use an OBB only when 1) there
are multiple intersecting tiles with an AABB, and 2) the ratio
of the major axis to the minor axis exceeds a pre-defined
threshold. We set the threshold at 2, which provides a rea-
sonable balance between the overhead of the intersection
test and false positives of Gaussian-tile assignments in our
experiments. Note that we can easily obtain the necessary
information during preprocessing.

4.2 Hierarchical Sorting
Based on the observation that we do not need to precisely
sort all the Gaussians when considering early termination,
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we propose a two-stage sorting process, called hierarchi-
cal sorting, which allows us to reduce the overhead asso-
ciated with Gaussian sorting. Our key idea is to initially
perform approximate sorting of all Gaussians, ensuring that
the Gaussians in Group𝑖 have lower depth values than those
in Group𝑖+1, while the Gaussians within each group are not
strictly ordered. Subsequently, we precisely sort each Gauss-
ian group at the time it is needed for rasterization runtime.
In essence, the approximate-sorting stage serves as a prepro-
cessing step aimed at reducing the sorting workload in the
subsequent stage.

This provides us with two key benefits. First, we can avoid
the sorting overhead for the Gaussian groups that will not be
ultimately rasterized due to early termination. In addition, it
allows us to hide the precise sorting overhead by overlapping
it with the rasterization process. Figure 7 shows an example
of hierarchical sorting. After the tile intersection test, we first
group the Gaussians that intersect the same tile. In the figure,
four Gaussians (Gaussian IDs: 12, 29, 33, 72) are grouped as
a set by tile binning, and we perform approximate sorting
on the group. To start the sorting, we randomly select the
depth of a Gaussian in the set as a pivot. Consequently, it
is divided into two chunks: one for lower and the other for
higher depths. Once the precise sorting of the lower chunk
is finished, we can start rasterization. If the rasterization of
the tile is finished due to early termination, we can skip the
precise sorting for the remaining higher chunks.

4.3 Skipping Ineffective Computation
In rasterization, the alpha values (𝛼) of Gaussians are cru-
cial for determining their influence on a pixel’s final color.
Originally, if the 𝛼 falls below a certain threshold, the Gauss-
ian is excluded from rendering for the pixel, which we call

𝛼-pruning. As discussed in Section 3.3, a significant number
of Gaussians are pruned after 𝛼-computation in the GPU
execution, not contributing to the pixel color through vol-
ume rendering. Given that 𝛼-computation involves multiple
floating-point operations (Equation 2), including a costly
exponential operation, the compute core consumes a large
portion of execution time for the ineffective computation.
Our key insight is that we can actually know the exact

boundary of each projected Gaussian because we treat it as
an ellipse; although a Gaussian is defined throughout all the
points in the 2D/3D space, we only keep it with a 3𝜎 (99.7%)
confidence interval. This means that we can pinpoint the
exact pixel locations to which a Gaussian may contribute.
Ideally, we want to maintain per-pixel information for

each Gaussian, but it is prohibitively costly. Instead, to re-
duce the ineffective 𝛼-computation, we divide each tile into
smaller sections, which we call subtiles. For each Gaussian,
we then encode the intersecting information between the
Gaussian and subtiles as a bitmap during preprocessing. For
example, we split a tile into 𝑁 subtiles, and an 𝑁 -bit bitmap
is assigned to each Gaussian, in which the 𝑖-th bit indicates
whether the Gaussian intersects with the 𝑖-th subtile of the
current processing tile (e.g., 0: not intersecting, 1: intersect-
ing). Along with our proposed GSCore architecture (Sec-
tion 5), this can greatly reduce unnecessary 𝛼-computation
while skipping the 𝑖-th subtile when the bit is zero.

The bitmap information is generated by performing an
intersection test between a Gaussian and subtiles within a
tile. Note that we use the features already computed in the
preprocessing step and simply calculate the radius (𝑟 ) of the
major and minor axes for bounding boxes using Equation 3:

𝑟𝑚𝑎𝑗𝑜𝑟 = 3 ×
√︁

max(𝜆1, 𝜆2) 𝑟𝑚𝑖𝑛𝑜𝑟 = 3 ×
√︁

min(𝜆1, 𝜆2), (3)

where 𝜆1 and 𝜆2 are the eigenvalues of a projected 2D co-
variance matrix of the Gaussian.

4.4 Putting It All Together
Figure 8 shows the Gaussian-based rendering process opti-
mized with our proposed mechanisms: shape-aware intersec-
tion test, hierarchical sorting, and subtile skipping. When the
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projected Gaussians are given, we opportunistically choose
the type of the bounding box for the intersection test while
considering the extent of the Gaussian and the aspect ratio of
the major and minor axes. We then identify the intersecting
tiles by employing different intersection tests for the AABB
and OBB. If the tile is intersected, we also generate a subtile
bitmap, which will be used in the rasterization step. After
the intersection test is done for all Gaussians, they are fed
into the corresponding set of the tile.

To reduce the sorting overhead, we approximately cluster
the Gaussians as multiple chunks in the first stage, and we
precisely sort each chunkwhen it is needed. In Figure 8, there
are four Gaussians assigned to Tile 1, which are divided into
two chunks in Stage 1. From the first chunk, we do precise
sorting and start the rasterization. During rasterization, we
effectively skip the computation of the subtiles when the
corresponding bitmap is zero.

5 GSCore Architecture
In this section, we present GSCore, a specialized rendering
engine for 3D Gaussian Splatting.

5.1 Overall Design
Figure 9 shows the overall design of GSCore, which com-
prises three main hardware modules: Culling and Conver-
sion Unit (CCU), Gaussian Sorting Unit (GSU), and Volume
Rendering Unit (VRU), each of which is responsible for pre-
processing, Gaussian sorting, and rasterization, respectively.
Given a set of 3D Gaussians with a viewpoint, the CCU

first culls invisible Gaussians. It then converts the features
of the visible Gaussians into new features (e.g., depth, RGB
color, projected 2D mean and covariance matrix) for use
in the subsequent modules. Using the new attributes, the
AABB/OBB intersection test units in the CCU conduct shape-
aware intersection tests to identify the tiles that intersect
with the projected Gaussian.

With the depth values and indices of the Gaussians, the
GSU performs depth-based sorting for each tile after tile
binning. It organizes the Gaussians within the same tile in
a hierarchical manner with two stages; i.e., approximate
sorting and precise sorting. In the first stage, the Gaussians
are divided into several chunks, each of which is of a size
that can be stored in the Gaussian feature (GFeat) buffer of

the VRU. Subsequently, they are precisely sorted starting
from the first chunk in the second stage and then sent to the
Gaussian feature buffer.

Finally, the VRU performs rasterization with subtile skip-
ping. It processes a single subtile at a time, which is mapped
to 4×4 volume rendering cores (VR cores). The VR cores are
arranged in a tiled fashion, and each VR core is responsible
for computing the colors of 2×2 pixels. In the following sec-
tions, we delve into the details of each hardware component.

5.2 Culling and Conversion Unit
The Culling and Conversion Unit (CCU) mainly performs
frustum culling, spherical harmonics computation, and shape-
aware intersection test, where one of the key components is
the OBB intersection test unit (OIU). The OIU is activated
to perform a more strict intersection test when an AABB in-
tersection unit finds multiple tiles that a Gaussian intersects
while meeting the threshold condition, which we discuss
in Section 4.1. We implement the OIU to perform SAT by
using an efficient OBB intersection test algorithm [19]. The
process involves projecting the centers of two boxes (i.e., a
tile and an OBB of the Gaussian) onto an axis and calculating
the radii, which are half the length of the intervals (Figure 6).
Then, if the distance between the projected centers exceeds
the sum of the radii, it indicates that the intervals do not
overlap. In principle, we need three dot product operations
for each axis: one to project the vector between the cen-
ters, and the other two to compute the radii. Along with
the algorithm, however, some dot product operations can be
eliminated because all vectors are already expressed in the
xy coordinate system. By reducing the number of required
dot product operations, we can reduce the area overhead
and latency for the OBB intersection test. In our design, each
CCU also employs two OIUs to perform the test in parallel.

5.3 Gaussian Sorting Unit
Figure 10 compares the execution of a single tile between
the GPU with the original algorithm and GSCore. Instead of
sorting the entire Gaussians before rasterization, the Gauss-
ian Sorting Unit (GSU) hierarchically sorts Gaussians in two
stages. This improves performance by overlapping sorting
with rasterization and by reducing the sorting overhead of
the chunks after early termination.
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In the approximate sorting stage, we first divide the Gaus-
sians into several chunks until a chunk fits into the Gaussian
feature buffer in the VRU. The chunks are depth-ordered in-
between, which means that the Gaussians in Chunk𝑖 (𝐶ℎ𝑘𝑖 )
have smaller depth values than those in Chunk𝑖+1 (𝐶ℎ𝑘𝑖+1),
while the Gaussians within each chunk are not strictly or-
dered yet. Then, at the precise sorting stage, GSU prioritizes
precise sorting of the Gaussians in the chunk with a smaller
depth. This is because we need to do 𝛼-blending from the
Gaussian at the smallest depth. Once the precise sorting of a
single chunk is done, VRU begins rasterization for the chunk.

Figure 11 shows two main units of the GSU: a quick sort-
ing unit (QSU) and a bitonic sorting unit (BSU). When the
depth values (Depth) and Gaussian indices (GID) are given
as key-value pairs, we perform quick sorting and bitonic
sorting in the GSU. For this, the GSU employs two 7-pivot
QSUs, one per each sorting stage, and one 16-channel BSU
for the precise sorting stage. For simplicity, a 4-channel BSU
is shown in the figure.
The QSU divides an unsorted list into multiple subsets.

Each subset is organized such that all elements are sorted
according to the pivot values, which serve as boundaries. To
do so, the key is fed into comparators, and a popcount unit
counts 1s of the output to find the subset index. We then
store the key and value at the corresponding offset of the
subset and increment the offset. In the first stage, we perform
multiple rounds of quick sorting until the size of each subset
is small enough to fit into the Gaussian feature buffer.
In the precise sorting stage, we use the BSU, which typi-

cally performs faster than quick sort because of its parallel
execution. However, the BSU is generally not scalable as
the number of input channels 𝐾 increases [23]. This is be-
cause the number of comparators and interconnects grows
proportionally to 𝐾 log2 (𝐾), resulting in a significant area
overhead. To balance performance and area overhead, we
opt for a 16-channel BSU. Then, in the precise sorting stage,
the BSU is utilized when the subset size reduces to 16 or
fewer after several rounds of quick sorting with the QSU.

5.4 Volume Rendering Unit
The Volume Rendering Unit (VRU) consists of 4×4 VR cores
for computing colors through volume rendering (Equation 1).
The VRU basically performs rendering at a subtile granularity
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(i.e., 8×8 pixels), and each core in the VRU is responsible for
rendering 2×2 pixels. As every pixel in a subtile computes
using the same Gaussian feature, the data is broadcast to all
cores from left to right. At each cycle, the Gaussian feature
is fed into the leftmost cores (i.e., the first column), and each
core sends the feature to the right neighbor until it arrives
at the rightmost cores. By using this interconnect topology,
we can effectively reduce the interconnect complexity for
broadcasting.
After loading the Gaussian feature, each core performs

three stages: 1) alpha computation and pruning, 2) early
termination, and 3) volume rendering, as shown in Figure 9.
Each of these stages takes more than a single cycle. In the
alpha computation stage, each core computes the alpha value
(𝛼) of the Gaussian based on Equation 2. It then checks if
the value is smaller than a pre-defined threshold ( 1

255 ). If so,
each core skips the 𝛼-blending of the Gaussian for the pixel.
In the next stage, each core updates the transmittance (𝑇 )
of the pixel, which is used to check for early termination,
using Equation 4:

Ti+1 = Ti × (1 − 𝛼𝑖 ) = Ti − Ti × 𝛼𝑖 . (4)

Each core stops volume rendering for the pixel if 𝑇𝑖+1 be-
comes smaller than the threshold (10−4); thus, the rest of the
Gaussians assigned to the pixel are not used. For this step,
there are two local registers for the transmittance: one for
termination checking (𝑇𝑖+1) and the other for the use in the
last stage (𝑇𝑖 ). In the last volume rendering stage, each core
finally computes the attributed color of the Gaussian using
the alpha (𝛼𝑖 ), transmittance (𝑇𝑖 ), and intrinsic color (𝑐𝑖 ) and
accumulates it to the pixel’s color register (𝐶).

As our volume rendering unit is fully pipelined, we need
to consider the data dependency of the transmittance be-
cause it is sequentially updated, as shown in Equation 4.
Within the VR core, transmittance is computed using the
multiply-and-accumulate (MAC) unit. In our design, which
operates at a 1GHz clock frequency, it takes four cycles for
the MAC unit to compute transmittance 𝑇𝑖+1 from 𝑇𝑖 . Hence,
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Table 3. Evaluated workloads.

Dataset Scene (Resolution) Type

Tanks&Temples [27] Train (980×545) Real World & Outdoor
Truck (979×546)

Deep Blending [22] Playroom (1264×832) Real World & Indoor
Drjohnson (1332×876)

Synthetic-NeRF [33] Lego (800×800) Synthetic
Synthetic-NSVF [30] Palace (800×800)

a straightforward core design would lead to the pipeline stall
until the computation of 𝑇𝑖+1 is finished, leading to severe
core underutilization. To address the issue, the VRU employs
a pixel-rotating pipelined core, where each VR core computes
2×2 pixels by rotating the pixels every cycle. Since there are
no dependencies between the transmittances of different pix-
els, the VR core can proceed to work on other pixels without
waiting for the completion of the previous transmittance
computation.

6 Methodology
Hardware Implementation. We implement the RTL de-
sign of hardware components in GSCore and synthesize it
using Synopsys Design Compiler with a commercial 28nm
technology node. The SRAMs are generated using a commer-
cial memory compiler with the same 28nm technology. Our
design runs at a 1GHz clock frequency and is fully pipelined.
We also implement a cycle-level simulator to evaluate the per-
formance of our design with off-chip memory. The simulator
models the GSCore architecture with detailed DRAM timing
modeled after Micron LPDDR4-3200 with Ramulator [26]. It
performs both functional and timing simulation with two
primary inputs: a viewpoint and a set of 3D Gaussians; thus,
our simulator also produces a final rendered image. We con-
figure the timing parameters of the simulator based on the
results from RTL synthesis. Performance metrics are calcu-
lated from the cycle count reported by the simulator, which
also provides other statistics such as the number of SRAM
accesses for estimating the energy consumption of on-chip
buffers. The energy consumption of off-chip memory is ob-
tained using DRAMPower [6] and the statistics from the
detailed DRAM model.
Workloads. Table 3 presents the workloads that we use to
evaluate our rendering engine. To generalize the results, we
carefully select several real-world (both indoor and outdoor)
and synthetic scenes with varying image resolutions from
the datasets published in prior works [22, 27, 30, 33]. Then,
we train the Gaussian model for each scene for 30K iterations.
Additionally, we observe that using FP16 does not lead to
perceptual differences compared to using FP32, except for
the exponential function in the alpha computation. Based
on the observation, we convert the models trained in FP32

Table 4. Comparison of the baseline GPU and GSCore.

Device Technology Area SRAM DRAM Number
Bandwidth of Cores

Xavier NX 12 nm 350 mm2 11.15 MB LPDDR4X 384 CUDA Cores59.7 GB/s

GSCore 28 nm 3.95 mm2 272 KB LPDDR4 64 VR Cores51.2 GB/s
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Figure 12. Speedup of GSCore over the baseline GPU.

to FP16 and perform rendering based on FP16 to improve
compute throughput and area efficiency in our design.
Baseline. We compare our accelerator with the NVIDIA
Jetson Xavier NX [39], which is a representative mobile com-
puting device. The performance and power consumption of
the GPU are measured using the built-in hardware counters.
Table 4 shows the hardware comparison between Xavier
NX and GSCore. GSCore has a smaller SRAM capacity and
fewer compute units than the baseline GPU, resulting in a
substantially smaller area despite using a technology node
that is a couple of generations behind. For software, we use
and modify author-released code, which uses the NVIDIA
CUB library for Gaussian sorting (fast radix sorting with par-
allel prefix scans) and implements the CUDA kernel-based
rasterizer. We enhance the baseline implementation to avoid
computations that do not need to be performed at runtime
for rendering (e.g., batched copy for merging SH coefficients)
and also implement our optimizations on the codebase to
evaluate their performance on the GPU.

7 Evaluation
7.1 Performance
Figure 12 shows the speedup of GSCore over the baseline
GPU, along with the performance of software implemen-
tations of our optimizations on Xavier NX. In the baseline
GPU, applying the shape-aware intersection test (SIT) pro-
vides a 1.71× speedup over the original implementation. The
benefit comes from mitigating the false positives of the in-
tersection test, which reduces both Gaussian sorting and
rasterization time due to the decreased number of Gaussians
per tile. Applying subtile skipping (STS) on top of that offers
an additional 15% performance improvement. To mitigate
thread divergence, we modify the thread indexing such that
pixels within the same subtile are mapped to the same warp.
The bitmap sparsity (i.e., the ratio of zeros) ranges from
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Table 5. Comparison of rendering quality (PSNR↑/LPIPS↓). Peak
signal-to-noise ratio (PSNR) and learned perceptual image patch
similarity (LPIPS) are widely used metrics to assess image quality.

Method Train Truck Playroom Drjohnson Lego Palace

Original 24.17 26.46 29.89 35.19 34.47 33.75
0.17 0.22 0.22 0.18 0.02 0.03

GSCore 24.26 26.49 29.83 35.00 34.40 33.76
0.17 0.22 0.22 0.18 0.02 0.03

around 35%–52% across the evaluated scenes, which leads to
speedups by avoiding unnecessary alpha computation.6

In comparison, GSCore achieves an overall 15.86× speedup
on average over the baseline GPU with the original imple-
mentation. As shown in Figure 13, which further presents the
speedup of two main operations (sorting and rasterization)
over each of which on the baseline GPU, the performance
benefit mainly comes from our specialized hardware design
tailored to each operation. The algorithmic optimizations
that synergistically work with GSCore also contribute to the
increase in performance, which we discuss in Section 7.3.
Overall, GSCore allows for real-time rendering across the
evaluated scenes, and for the synthetic scenes such as Lego
and Palace, it offers a significantly higher FPS.

7.2 Rendering Quality and Compute Efficiency
Table 5 compares the rendering quality between the original
implementation and the one employed in GSCore. While
we employ several optimizations, they do not lead to any
approximation; our intersection test does not produce false
negatives, and hierarchical sorting preserves the sorting or-
der in the precise sorting stage. The slight difference between
the two is because of using FP16 computation in our design,
which leads to a negligible PSNR drop (e.g., a 0.5% PSNR
drop at most and even better PSNRs for some scenes) and no
loss for LPIPS.
Without sacrificing rendering quality, our optimizations

help improve compute efficiency compared to when employ-
ing the original algorithm on GSCore, as shown in Table 6.
A higher ratio indicates that Gaussians are likely to be used
more in the volume rendering stage after alpha computation;
in contrast, a lower ratio indicates that hardware performs

6For hierarchical sorting, our implementation based on concurrent ker-
nel execution of sorting and rasterization leads to a slowdown due to the
overhead of fine-grained synchronizations.
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Figure 14. Speedup of variants isolating each optimization.

Table 6. VRU core utilization when employing the original algo-
rithm and our optimizations.

Method Train Truck Playroom Drjohnson Lego Palace

Original 5.31 3.91 5.76 5.86 2.52 2.73
GSCore 19.96 12.75 24.61 26.31 10.65 11.72

more unnecessary computation. With the shape-aware in-
tersection test and subtile skipping, GSCore achieves higher
compute efficiency compared to using the original algorithm.

7.3 Source of Performance Gain
Figure 14 shows the speedup when we apply the algorithmic
optimizations—shape-aware intersection test (SIT), subtile
skipping (STS), and hierarchical sorting (HS)—to GSCore.
We evaluate four variants of GSCore: Baseline, SIT, SIT+STS,
and SIT+STS+HS. The baseline is the execution model of the
original algorithm in GSCore. The speedup of SIT mainly
comes from reducing false positives of Gaussian-tile assign-
ments. This decreases the number of Gaussians that need to
be processed in both sorting and rasterization. As a result, it
effectively mitigates unnecessary computation and memory
traffic, as we discuss in Section 8. STS further improves the
performance of rasterization by reducing ineffective com-
putation within a tile using a bitmap. HS reduces Gaussian
sorting overheads by overlapping the execution with ras-
terization and skipping the sorting of Gaussians after early
termination. We see that HS synergistically works with STS;
when employing STS, the relative portion of sorting in over-
all rendering time increases, thus reducing the overhead of
sorting leads to a non-negligible speedup.

7.4 Area and Energy Efficiency
Table 7 presents the area and power of GSCore. At a 1GHz
clock frequency, our design has a total area of 3.95mm2 with

Table 7. Area and power.

Component Configuration Area [mm2] Power [W]

Culling and Conversion Unit 4 units 0.82 0.52
Bitonic Sorting Unit 4×(1 unit) 0.06 0.05
Quick Sorting Unit 4×(2 units) 0.01 0.01
Volume Rendering Core 4×(4×4) 1.81 0.25
GFeat Buffer+Others 4×2×(16KB+18KB) 1.25 0.04

Total 3.95 0.87
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Figure 16. Performance comparison across VRU core sizes.

a power consumption of 0.87W. For area overhead, the Gauss-
ian feature buffer is one of the key contributors. It is noted
that although we opt for a size to accommodate 256 Gaus-
sians (i.e., Gaussian chunk size of 256), we can also employ
smaller chunk sizes with minimal impact on performance
benefits of GSCore (Section 7.5), which would lead to a re-
duction in the overall area.

Figure 15 shows the energy efficiency of GSCore compared
to the baseline GPU. The benefit comes from our specialized
design tailored to the Gaussian-based rendering pipeline,
which renders an image faster with low power consump-
tion, along with the reduction in off-chip memory access
due to our optimizations. Overall, GSCore achieves a 15.50×
improvement in energy efficiency over the baseline.

7.5 Sensitivity Study
VRUDesign Space.As the cores in the VRU compute a set of
pixel colors by processing the same Gaussian features, using
a smaller VRU can lead to a reduction in ineffective computa-
tion. Figure 16 shows the performance across different VRU
configurations normalized to 8×8. For a fair comparison, we
set the total number of VR cores as the same (i.e., 64) across
the configurations by using multiple VRUs for small VRU
sizes. The performance generally increases from 8×8 to 2×2
as we can skip more unnecessary computation in a smaller
VRU. However, using multiple small VRUs leads to off-chip
memory contention due to concurrent requests for Gaussian
features from a large number of VRUs. Consequently, we
observe a slowdown in the core size of 1×1 compared to the
2×2. Furthermore, since each VRU requires its own Gaussian
feature buffer, using multiple small VRUs also increases the
area overhead. We choose a core size of 4×4, which provides
us with a reasonable tradeoff between performance and area
overhead.
Gaussian Chunk Size. GSCore employs hierarchical sort-
ing and splits Gaussians into several chunks in the approx-
imate sorting stage. Because VRU starts computation only
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Figure 17. Performance comparison across Gaussian chunk sizes.

0

2

4

6

8

Train Truck Playroom Drjohnson Lego Palace

N
or

m
al

iz
ed

 T
im

e 4x4 8x8 16x16 32x32

Figure 18. Normalized rendering time across tile sizes on GPU.

after the Gaussian features for a chunk are fully loaded into
the feature buffer, the performance of GSCore varies depend-
ing on the chunk size. Figure 17 shows the speedup across
the different Gaussian chunk sizes ranging from 64 to 2048,
which is normalized to the chunk size of 64. The results
show that moderate chunk sizes provide better performance
than others, with a reduced speedup at smaller or larger
chunk sizes. For larger chunk sizes (e.g., 1024 or 2048), the
approximate sorting stage completes earlier because of fewer
iterations resulting in a smaller number of chunks. However,
they can lead to longer idle cycles of the VRU because it takes
more time to load the features for a chunk into the buffer
compared to the small and moderate chunk sizes, thereby
exposing off-chip memory access latency despite employ-
ing double buffering for the feature buffer. Also, the benefit
of hierarchical sorting can be reduced as larger chunks are
likely to contain more Gaussians that become unnecessary
after early termination. Conversely, for smaller chunk sizes
(e.g., 64 or 128), the approximate sorting unit consumes more
cycles because it needs to iterate more to generate smaller
chunks. However, the idle cycles of the VRU can be lower
because of the reduction in feature loading time and off-chip
memory access. Considering this dueling tension, we choose
the chunk size of 256 for our design.

8 Analysis and Discussion
Varying Tile Sizes on GPU. Using smaller tiles reduces the
false positives of Gaussian-tile intersection, so rasterization
latency can be reduced. However, simply reducing the tile
size on GPUs leads to an increase in sorting overheads be-
cause Gaussians intersect with more tiles. Figure 18 shows
the rendering time of different tile (thread block) sizes nor-
malized to the default configuration (i.e., a 16×16-pixel tile)
on Xavier NX. The results show that the overall rendering
time increases as the tile size is reduced. For an 8×8 tile, we
see that the increase in sorting overheads outweighs the de-
crease in rasterization latency. For a 4×4 tile, a thread block
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Figure 19. (a) Roofline models for the baseline GPU. (b) Normalized
number of memory requests of variants isolating each optimization
in GSCore (Train/30K).

only contains 16 threads (i.e., less than the warp size), and
we observe that rasterization latency also becomes longer
than that of 8×8 and 16×16, in addition to more sorting over-
heads. For a 32×32 tile, the increase in rasterization latency
due to more false positives outweighs the decrease in sorting
latency. As discussed in Section 4.3, our subtile skipping can
help reduce the rasterization latency without increasing the
sorting overhead.
Roofline and Memory Requests. Figure 19(a) shows the
roofline models of the main operations in Gaussian Splat-
ting on the baseline GPU (for Train/30K): preprocessing, ras-
terization, and Gaussian sorting. Preprocessing is memory
bandwidth-bound as it loads a large number of parameters
for each Gaussian with no data reuse. In contrast, raster-
ization is compute-bound because the feature dimension
of loaded Gaussians is greatly reduced in the preprocess-
ing stage and Gaussians are highly reused within a tile (i.e.,
CUDA thread block) with heavy computation for alpha and
volume rendering. Gaussian sorting requires multiple reads
and writes of both entire (> 4M) Gaussian indices and depth
values of Gaussians, which are memory bandwidth-bound
operations. Building on the analysis, we observe ineffective
memory access and computation in Gaussian sorting and vol-
ume rendering and propose three algorithmic optimizations:
hierarchical sorting (HS), Gaussian shape-aware intersection
test (SIT), and subtile skipping (STS).
Figure 19(b) shows the number of memory requests for

each optimization normalized to the original algorithm in
our architecture (baseline). First, HS reduces 19% of memory
requests while skipping unnecessary sorting of Gaussians
after early termination. Second, SIT effectively removes false
positives of Gaussian-tile assignments and reduces unneces-
sary Gaussian feature loads in both sorting and rasterization.
This not only leads to a work reduction but results in an
additional 2× reduction in off-chip memory access. Lastly,
instead of reducing memory traffic, STS skips ineffective
computation in rasterization, which is a compute-bound op-
eration.
Fixed-Function Rasterizer in GPU. 3D Gaussian Splatting
is a rasterization-based method, but it is a bit unique in that
the primitives are transparent Gaussians (not meshes), so we
need to perform volume rendering like NeRFs. While one
may use fixed-function rasterizers at least for part of the

rendering pipeline, it is likely a bit inefficient compared to
the VRU in our work. In general, hardware rasterizers [1, 12]
simply produce fragments for given triangular meshes, so
alpha computation of Gaussians and blending updates need
to be performed in other programmable or fixed-function
hardware. All the transparent fragments are also blended
without doing early termination, which is a widely used
technique for volume rendering. One can probably perform
early termination using programmable cores, but it is also
expected to be slower compared to dedicated hardware such
as VRU.
Using RT Cores for Intersection Test. Instead of pro-
ducing fragments by conventional rasterization, one may
consider using RT cores as they accelerate the ray-AABB
intersection test. To do so, we need to build a Bounding Vol-
ume Hierarchy (BVH) with the AABBs of 3D Gaussians and
perform a BVH traversal for every ray (i.e., pixel) to find
intersecting Gaussians. However, achieving better perfor-
mance compared to conventional rasterization might be chal-
lenging. In rasterization, we can directly find all intersecting
pixels with the AABB using simple computation (Section 4.1),
whereas for the case of RT cores, we need to perform a redun-
dant BVH traversal for every pixel that intersects the same
Gaussian. In addition, a BVH traversal is computationally
more expensive than the simple intersection test for rasteri-
zation primitives, as it requires multiple fetching/decoding
of the AABBs and ray-AABB intersection tests from the root
to a leaf node. It is also noted that accelerating Gaussian-tile
intersection tests does not significantly lead to a reduction
in overall rendering time, as volume rendering and Gaussian
sorting are bigger performance bottlenecks.

9 Related Work
Radiance Field Rendering Acceleration. Recent work
proposed software optimizations [10, 15, 36, 48] and hard-
ware accelerators [28, 29, 35, 47] to improve the performance
of NeRFs.While the original NeRF [33] only consists of MLPs,
which can be accelerated by conventional DNN accelera-
tors [8, 9, 14, 21, 24, 34, 38, 44], the state-of-the-art NeRF
models also employ other types of operations, such as multi-
resolution hash encoding [36], which become performance
bottlenecks. NeuRex [28] proposes restricted hashing, which
can eliminate irregular off-chip memory access to hash ta-
bles and enable concurrent execution of encoding and MLP
operations, along with an accelerator that features a spe-
cialized hash encoding engine. Instant-3D [29] presents a
training accelerator with specialized hardware units that
improve on-chip memory bandwidth utilization and reduce
frequent writes to on-chip memory for parameter updates.
However, these works focus on NeRFs that employ neural
networks, whereas GSCore is the first work that targets
Gaussian Splatting [25], which builds on differentiable ras-
terization primitives instead of using neural networks.
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Ray Tracing Acceleration. Ray tracing produces high-
quality images with realistic lighting effects by tracing the
path of individual rays [18]. As it requires costly compu-
tation, however, a large number of software and hardware
techniques have been proposed to accelerate ray tracing thus
far [11, 31, 32, 37, 40, 41]. Several hardware vendors recently
also started featuring ray-tracing hardware units in their
GPUs, such as NVIDIA RTX series [5], ARM Immortalis-
G715 [3], and Qualcomm Adreno GPU [42], which improves
the performance of the ray-primitive intersection test. While
they can accelerate ray tracing-based rendering, it is chal-
lenging to use the hardware units for efficiently performing
Gaussian-based radiance field rendering, which GSCore of-
fers with a specialized rendering engine.
Fixed-Function Graphics Pipeline. Traditionally, graph-
ics rendering has been performed on the fixed-function
pipeline in graphics hardware. Several prior works have stud-
ied the performance and power modeling of the graphics
pipeline or implemented GPUs in RTL with fixed-function
units such as hardware rasterizers or rendering output units
(ROP) [20, 45, 50, 51]. While contemporary GPUs now em-
ploy programmable shaders that can be used for graphics ren-
dering, modern rendering methods (e.g., ray tracing) can still
benefit from fixed-function hardware such as RT Cores [5].
Gaussian Splatting, which this work targets, is another ex-
ample of modern rendering methods that can be better sup-
ported by specialized hardware units such as GSCore.

10 Conclusion
3D Gaussian Splatting gains significant attention due to its
remarkable ability to generate photorealistic images from
novel viewpoints, much faster than neural renderings. Never-
theless, we observe that there are opportunities to make the
technique more effective and bring its benefits across a wide
range of computing segments. In this work, we carefully
examine the rendering pipeline of 3D Gaussian Splatting
and propose an algorithm-hardware co-design that enables
us to efficiently execute the rendering pipeline. Through this
co-design approach, GSCore markedly improves the perfor-
mance of Gaussian-based rendering over existing mobile
platforms while maintaining quality standards.
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