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Abstract— Deep neural networks (DNNs) are widely used in 

data analytics, since they deliver state-of-the-art accuracies. 
Binarized neural networks (BNNs) are recently proposed 
optimized variant of DNNs. BNNs constraint network weight 
and/or neuron value to either +1 or -1, which is representable in 1 
bit. This leads to dramatic algorithm efficiency improvement, due 
to reduction in the memory and computational demands. This 
paper evaluates the opportunity to further improve the execution 
efficiency of BNNs through hardware acceleration. We first 
proposed a BNN hardware accelerator design. Then, we 
implemented the proposed accelerator on Aria 10 FPGA as well 
as 14-nm ASIC, and compared them against optimized software 
on Xeon server CPU, Nvidia Titan X server GPU, and Nvidia 
TX1 mobile GPU. Our evaluation shows that FPGA provides 
superior efficiency over CPU and GPU. Even though CPU and 
GPU offer high peak theoretical performance, they are not as 
efficiently utilized since BNNs rely on binarized bit-level 
operations that are better suited for custom hardware.  Finally, 
even though ASIC is still more efficient, FPGA can provide 
orders of magnitudes in efficiency improvements over software, 
without having to lock into a fixed ASIC solution.  

Keywords— Deep learning, binarized neural networks, FPGA, 
CPU, GPU, ASIC, data analytics, hardware accelerator. 

I.  INTRODUCTION 
The proliferation of Internet technologies led to the 

abundance and rapidly growing digital data, from sources such 
as social media, blogs, Internet-of-things (IoT) applications, 
etc. Data analytics extract knowledge from such data, often by 
using machine learning (ML) algorithms. In particular, deep 
neural networks (DNNs) have been widely adopted, as they 
show state-of-the-art accuracies for various analytics 
classification tasks (e.g., computer vision, speech, etc).  

With advances in DNNs, there is a trend towards deeper 
networks that consequently carry more network parameters 
with increased model size. For example, AlexNet [8] contains 
60M parameters, which demands storage size of 240MB when 
stored as 32-bit numbers. 

Larger DNN models are challenging to execute efficiently. 
Especially, in fully connected layers where there is no data 
reuse, processing a larger model that does not fit in on-chip 
RAMs would lead to off-chip DRAM accesses. Such accesses 
are very energy inefficient compared to on-chip operations 
(e.g., for 45nm CMOS [9], a 32-bit DRAM access requires 
172x more energy than a floating point multiply). Moreover, 
performance becomes limited by bandwidth available to access 
the model from DRAM. Batching multiple inputs together can 
help improve data re-use, but in practice only small batch size 
is tolerable due to real-time latency requirements in analytics 

servers [3]. For IoT platforms, real-time requirements will be 
even more stringent, and batching may not be feasible at all. 

Binarized Neural Networks (BNNs) [1][2] have very 
recently been proposed to address the aforementioned 
challenge. A BNN offers an extremely more compact 
representation of network weights and neuron values than a 
normal DNN by constraining each value to either +1 or -1. As 
such, storage need is dramatically reduced since the weights 
can be stored in a single bit (i.e., +1 stored as 1, and -1 as 0). 
Furthermore, multiply operations can be replaced by bit-wise 
operations instead, thereby reducing computational demand as 
well. So far, BNNs have been shown to offer comparable 
accuracies to full-precision DNNs for some known datasets 
(e.g., CIFAR10), and they are actively being studied to 
improve accuracies for more datasets (e.g., ImageNet). 
However, while prior works [1][2] have offered in-depth 
algorithm studies and analyses of BNNs, we are not aware of 
any that has proposed a hardware accelerator for BNNs.  

Neural network analytics workloads are deployed in a wide 
range of settings, from high-end servers in data centers for 
cloud-scale analytics to mobile platforms for Internet-of-
Things (IoT) applications. In all cases, there is a strong need 
for extreme energy efficiency in addition to high performance. 
To this end, both cloud servers as well as IoT platforms have 
become heterogeneous in recent years, where they integrate 
hardware accelerators alongside general purpose CPUs to 
deliver significant execution efficiency for computations 
offloaded to these accelerators, while maintaining generality to 
execute the rest of the workloads. FPGAs, GPUs, and ASICs 
are the well-known accelerators available in the market today. 
In particular, FPGAs have become more widely adopted in 
cloud servers as well IoT platforms. Leading technology 
companies are pushing towards integrating FPGAs into data 
centers (e.g., Intel Xeon+FPGA, Microsoft Catapult). There are 
also IoT platforms (e.g., Altera SoC FPGA family) integrating 
embedded processor(s) and FPGA in a single package. 

This paper investigates the opportunities for accelerating 
BNNs. We made the following contributions. First, we propose 
hardware accelerator architecture for BNNs.  Second, we 
explore software enhancements for BNNs (e.g., replace full-
precision with binary operations) for CPU and GPU. Third, we 
evaluate our accelerators on state-of-the-art Altera Aria 10 
FPGA and 14nm ASIC, and compare them against optimized 
software on a cloud-server with Intel Xeon CPU and Nvidia 
Titan X GPU and IoT platform with mobile Nvidia TX1 GPU. 
We show that software optimized for BNNs deliver significant 
performance improvements over standard DNNs. Moreover, 
we show that hardware accelerators offer further order of 
magnitude efficiency improvements over optimized BNN 
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software CPU and GPU implementations, since they take better 
take advantage of BNN bitwise data formats and operations. 

The rest of the paper is organized as follows. Section II 
gives background on ML analytics and BNNs. Section III 
presents the proposed BNN accelerator. Section IV details the 
BNN software optimizations on CPU and GPU. Section V 
presents our evaluation results. Finally, section VI and VII 
offer related work and concluding remarks, respectively. 

II. BACKGROUND 

A. Machine Learning for Data Analytics 
Classification vs. Training. Many data analytics 

workloads rely on machine learning (ML) algorithms. A 
typical ML setup for data analytics consists of two phases. 
First, during training phase, a known set of data samples is fed 
into an ML algorithm, which then creates a model with 
predictive power. Then, in the classification phase, this model 
is used by the ML algorithm to make predictions for any new 
given data samples. This paper focuses on binarized neural 
networks (BNNs) for classification phase.  

Batched Classification. In the classification phase, a 
popular optimization is to process a batch of multiple input 
samples together to improve data reuse and throughput. 
However, batching increases processing latency since a batch 
of outputs is produced at a time, instead of a single output at a 
time. Moreover, batching can increase implementation 
complexity, due to the need to group incoming requests into 
batches and schedule them properly for processing. In practice, 
it can be impractical to use large batch sizes. E.g., in a 
commercial analytics based on neural networks in [3], ~90% of 
the time there are only up to 4 inputs that can be grouped 
together (batch size of 4), with a maximum of 10 inputs (batch 
size of 10). This is due to the need to meet the stringent 
processing latency constraints. This paper considers normal as 
well as batch-mode in our evaluations. 

 

Fig. 1. In binarized neural networks, the matrix x vector operation to compute 
each network layer can be replaced by xnor and bit counting because weights 
and neurons are constrained to either +1 or -1, each representable in 1-bit. 

B. Binarized Neural Networks (BNNs) 
In a deep neural network, a fully connected layer performs 

the following computation 

  vo = f(W.vi + b)    (1) 

Where vi is a vector of input neurons, W is a matrix of the 
network weights, b is the bias, and vo is the vector of output 
neurons for the layer. f is the activation function, such as 
Rectified Linear Unit (ReLU). Optionally, f may also include 
normalization (e.g., batch normalization [10]) prior to applying 
the activation function. Often times, b can be merged into vi. 
Figure 1(a) shows an example DNN layer computation as a W 
matrix x vi vector operation. 

There has been recent trend towards deeper networks with 
more parameters, since such networks can provide better 
accuracies. As such, the size of W, vi, and vo have become 
noticeable large. For example, one of the fully connected layers 
in AlexNet [8] and VGG [11] use a 4K x 4K weight matrix 
(W). When each weight is represented as a 32-bit number, 
storing the W matrix would require 64MB of storage. In 
practice, processing such a model efficiently is very 
challenging, since it does not fit in on-chip RAMs of a typical 
system. Hence, some or most of the model will have to reside 
in DRAM memory, which is power consuming and has much 
lower bandwidth than on-chip RAMs, thereby imposing 
performance constraints. As stated earlier, DRAM accesses are 
significantly more energy consuming than on-chip operations.  

Binarized neural networks (BNNs) have the potential to 
address this issue. BNNs [1][2] have been proposed recently to 
improve the efficiency of the standard neural networks. In a 
BNN, each network weight and neuron value is constrained to 
be of only two possible values, +1 or -1. As such, it can be 
represented using a single bit. Therefore, BNNs require 
significantly less storage than standard DNNs. In our previous 
example of 4K x 4K weight matrix, instead of needing 64MB 
storage when using 32-bit number representation, a binarized 
weight matrix would require only 2MB storage (i.e., 32x less). 
BNNs also improve computation efficiency, as discussed next. 

There are three types of computations in a BNN.  

Binarized Matrix x Full-Precision Vector. In the first 
layer, the input neurons represent the input sample data. Thus, 
they cannot be binarized. So, in this case, vi is still represented 
using full 32-bit floating or fixed point. Each weight in a 
binarized weight matrix (Wb), however, is a 1-bit value. Thus, 
the computation for the first layer is a multiplication of 32-bit 
vi against binarized Wb. This operation can efficiently be done 
by adjusting the sign bit of vi against the 1-bit weight of Wb. 
I.e., if they are of the same sign, the output should maintain the 
sign bit. Otherwise, the output should have the opposite sign.  

Binarized Matrix x Binarized Vector. Since activation 
function in BNN [1][2] produces a +1 or -1 value, neurons (vi 
and vo) after the first BNN layer would be representable as 1-
bit values. As such, the computation multiplies a binarized 
vector of input neurons (vib) against a binarized weight matrix 
Wb. Such operation can be done using xnor and a variant of a 
population count (pcnt), thereby eliminating the need for full-
precision operations. Figure 1(b) illustrates how a matrix x 
vector operation of +1 and -1 values can be binarized and 
computed using xnor and pcnt.  

Normalization and Activation Function. Lastly, 
normalization and activation function are applied to finalize the 



output neurons. It has been recommended [2] to use batch 
normalization [10] with BNN, which involves applying several 
constant parameters obtained from training phase (i.e., ϒ, β). 
For the activation function, ReLU is very commonly used, and 
is also used in BNN [2]. As such, this paper uses ReLU. 

 

Fig. 2. The proposed accelerator for binarized neural networks (BNNs). 

 
Fig. 3. Sequences of operations that a processing element takes to process a 
BNN layer. (a) Load initial ACC constant. (b) Multiplication of input neurons 
against weights. (c)(d) Normalization and activation function. 

III. HARDWARE ACCELERATOR 
We propose hardware accelerator architecture for BNNs. It 

supports all the operations needed to process arbitrary BNNs. It 
is especially designed to realize the efficiency benefits of 
BNNs. It contains a scalable number of processing elements, 
along many distributed on-chip RAMs. The network 
parameters (e.g., binarized weights, normalization constants) 
are kept in these on-chip RAMs and supplied to the many PEs 

performing the computation in parallel. In result, the many on-
chip RAMs deliver sufficient bandwidth to the PEs to achieve 
high throughput at extreme efficiency. This section first 
describes the architecture of the proposed accelerator. Then, it 
details implementations of such architecture onto an Altera 
Aria 10 FPGA as well as 14nm ASICs. 

A. Accelerator Architecture 
Architecture Details. The high-level architecture of the 

proposed BNN accelerator is shown in Figure 2(a). The 
architecture consists of a number of processing elements (PEs). 
It can be scaled up (or down) by adding more (or less) PEs. 
Each PE works on computing either a single full-precision 
neuron value or multiple binarized values in a packed format. 
The PEs are connected to on-chip RAM buffers, which are 
used to keep the input and output neuron values, as well as 
temporary values, for the BNN layers being processed. The 
data management unit (DMU) handles the movement of data in 
and out of the accelerator. It brings in the input neuron values 
and writes out the final output neuron values. It also loads 
network parameters to internal PE RAMs.  

The PE internal design is shown in Figure 2(b). It consists 
of a local RAM that keeps network weights. Each weight is 1-
bit. In our PE design, we pack 32 weights into a 32-bit value 
for efficient processing. The RAM also keeps initialization 
(e.g., 0, b, b-μ) and batch normalization (i.e., β, ϒ) parameters.  

A PE also contains a multiplier unit (MUL), an adder unit 
(ADD), an accumulator register (ACC), and an AF/I2F unit. To 
cover all BNN operations discussed earlier, the PE supports 
both full-precision and binarized operations. However, since 
binarized operations are more performance critical, and there is 
only few BNN operations that rely on full-precision, we chose 
to evaluate the more efficient fixed point for full precision 
support in this paper (i.e., instead of floating point). 

The MUL unit supports both full-precision fixed point 
(FMUL) and binarized multiplication (BMUL) operations. The 
datapath to support BMUL is shown in Figure 2(c). It consists 
of an xnor unit, as well as a set of look up tables and adders to 
perform the specialized population count needed for BMUL.  

The PE ADD unit is a full-precision adder, used either to 
accumulate the integer BMUL output or full-precision results 
from the first-layer computation or batch normalization.  

 The AF/I2F unit applies transformations to the accumulated 
value prior to writing it to the output RAM buffer. These 
transformations include: applying activation function (we use 
ReLU in this study) and converting integer to fixed point. 

Accelerator Operations. The proposed accelerator 
supports all the operations needed to process BNNs. Figure 3 
illustrates the sequence of PE operations when processing a 
BNN layer. They work as follows.  

First, an initialization parameter is loaded to ACC register. 
An initialization parameter is the constant offsets to be applied 
to output neuron values. In a typical setup where a BNN layer 
includes a bias node and utilizes batch normalization at its 
output [10], the offset would be b-μ. This parameter can be 
adjusted for other BNN variants. For example, if batch 



normalization is not used, then this could be set to the bias 
parameter b. Further, if bias is not used, this could be set to 0. 

Second, the input neuron values to the layer are multiplied 
against network weights. For first BNN layer, input neurons 
are fixed points. Hence, a PE will multiply-accumulate a single 
neuron value with a single weight at a time (i.e., FMUL and 
FADD). For other layers (hidden and output layers), the input 
neuron values and the weights are binarized (single bit each). 
Therefore, the PE can multiply-accumulate a set of packed 
weights and neuron values at a time (i.e., BMUL and integer 
ADD). In our study, we pack 32 weights and neuron values 
together into 32-bit chunks. So, a PE can perform 32 binarized 
multiply-accumulate at a time. This improves efficiency and 
speeds up computation. E.g., relative to a 32-bit representation 
of weights and neurons, this means 32x speedup in multiply-
accumulate computation. The accumulated results are then 
written to PE temporary buffers. If this is the first BNN layer, 
no data transformation is needed, and AF/I2F unit is set to 
simply pass through the result to write out. For other layers, the 
accumulated result is integer, and AF/I2F unit is set to convert 
it into fixed point (I2F operation). 

To produce the final output neurons for the layer, the ACC 
is loaded with batch normalization parameter β (figure 3(c)). 
Then the accumulated result that was written out to temporary 
buffer is read back into the PE. It is then multiplied against the 
other batched normalization parameter ϒ and accumulated with 
β that was loaded into the ACC earlier. The updated ACC 
value is then fed into AF/I2F unit, where activation function 
(AF) is applied to produce the final neuron output. The final 
output is written back to the PE buffers. (Figure 3(d)). 

B. Implementations on FPGA and ASIC 
For evaluation, we developed a Verilog RTL 

implementation of the BNN accelerator detailed in the previous 
sub-section. We used the BNN software from [2] as functional 
reference. The RTL is parameterizable to facilitate design 
space exploration. For example, a parameter can be set to 
output an RTL instance with arbitrary number of PEs, which 
we can use to scale up/down various design instances for us to 
study. From this parameterized Verilog RTL, we map our 
accelerator architecture onto FPGA and ASIC, which we 
describe in further detail below. 

 

Fig. 4. FPGA and ASIC accelerators under study. (b) shows ASIC64 design 
place and routed on 14nm technology. Each color is a 16-PE tile.  

FPGA. FPGA technologies have advanced rapidly. There 
are increasing numbers of on-chip RAMs, hard DSPs for 
arithmetic operations, and reconfigurable fabric resources in 
newer FPGAs. As such, FPGAs have the potential to offer very 
efficient BNN accelerator implementations. The compact 

binarized weights for interesting problem sizes can fit in many 
distributed on-chip FPGA RAMs that deliver abundance of on-
chip bandwidth to the reconfigurable fabric and DSPs to 
perform high-throughput computation on packed binarized 
neuron and weight values. 

This paper targets a high-end Altera Aria 10 FPGA, which 
contains ~6MB of on-chip RAMs (i.e., 2713 M20Ks resources) 
and 1518 hard DSP units. Note that while Aria 10 is the latest 
Altera family available today, the next-generation Stratix 10 
family is slated for release soon. Stratix 10 will offer up to ~28 
on-chip RAMs, ~5K DSPs, and higher frequency. Thus we 
expect dramatic increase in FPGA performance in the near 
future when Stratix 10 becomes available. 

In our evaluation, we first start by using our parameterized 
Verilog RTL to produce a small design instance (e.g., few 
PEs). Then, we increase the design parameters to scale up, until 
we can no longer fit the design onto the FPGA. This largest 
design will be used to represent a high-performance design for 
server applications. Additionally, we also study a smaller scale 
design for IoT application.  

We use Altera Quartus Prime to do our synthesis and 
mapping to FPGA. To calculate power estimate for FPGA, we 
use Altera’s PowerPlay Early Power Estimator tool [13]. We 
check to ensure that we are properly writing the RTL such that 
the tool infers the appropriate FPGA resources. E.g., on-chip 
PE RAMs are mapped to M20Ks, and the full-precision 
multiplier units are mapped to DSPs.  

The largest design we can fit our target Aria 10 FPGA 
contains 1024 PEs and ~4MB of on-chip RAMs. We also 
chose another smaller scale design to study, which contains 64 
PEs. The specifications for these designs (FPGA64, 
FPGA1024) are shown in Figure 4(a). In FPGA1024, while we 
are able to utilize all the DSPs in the Aria 10, we are not able to 
use all the on-chip RAMs (M20Ks) due to routing constraints.  

In Figure 4(a), we also report peak throughput as terra 
operations per second (TOP/sec). This represents 1-bit multiply 
and accumulation operations on network weights and neurons. 
It is calculated as follows. As an example, the FPGA1024 
design contains 1024 PEs and each PE does 32-bit packed 
weights calculation in parallel in a pipelined fashion to retire 
32 new results each cycle. So, at 150MHz frequency, the peak 
throughput is 1024 PEs x (32 bits packed x (1 multiply + 1 
accumulate)/PE) x 150M operations per second. This results in 
9.8 TOP/sec. Such a high peak throughput is feasible due to the 
significant efficiency benefit of binarization. 

ASIC. For ASIC evaluation, we study design instances 
with 64 and 256 PEs. These designs are synthesized using Intel 
14nm ASIC flow, for which the area and power estimates are 
obtained. Both designs meet the target frequency of 1 GHz. 
Memory elements are modeled using CACTI. The summary of 
both implementations are provided in Figure 4(a). Figure 4(b) 
shows a place-and-routed 64-PE design (i.e., ASIC64). In the 
figure, each of the four tiles in the design is highlighted with a 
different color, where each tile contains 16 PEs. 

In ASIC64, since the design runs at 1GHz, the 64-PE 
design can deliver a peak throughput of 64 PEs x (32 bits 
packed x (1 multiply + 1 accumulate)/PE) x 1G operations per 



second, which results in 4 TOP/sec. Scaled accordingly, the 
256-PE design can deliver a peak throughput of 16 TOP/s. In 
both designs, the on-chip RAMs account for a non-trivial 
portion of the total chip power and area.  

IV. SOFTWARE ON CPU AND GPUS 
To evaluate the effectiveness of the proposed hardware 

accelerator architecture, we compare the FPGA and ASIC 
implementations against a variety of optimized software 
implementations on CPU and GPU platforms. For all the 
platforms, we evaluate optimized software implementations of 
baseline SGEMV for standard neural networks as well as 
binarized GEMV for BNNs. 

#pragma omp parallel for
for(int i=0;i<n;i+=fBlkI) 
for(int j=0;j<m;j+=fBlkJ) 
for(int k=0;k<_k;k+=fBlkK) {

for(int jj=0;jj<fBlkJ;jj++) 
for(int kk=0;kk<fBlkK;kk++)

bt[jj][kk] = B[(k + kk)*m + j + jj];
for(int ii=0;ii<fBlkI;ii+=fBlkII)
for(int jj=0;jj<fBlkJ;jj+=fBlkJJ)

for(int kk=0;kk<fBlkK;kk+=fBlkKK){
ct_00 = C[(i+ii+0)*m+j+jj+0]; ct_01 = C[(i+ii+0)*m+j+jj+1];
ct_10 = C[(i+ii+1)*m+j+jj+0]; ct_11 = C[(i+ii+1)*m+j+jj+1];
ct_20 = C[(i+ii+2)*m+j+jj+0]; ct_21 = C[(i+ii+2)*m+j+jj+1];
ct_30 = C[(i+ii+3)*m+j+jj+0]; ct_31 = C[(i+ii+3)*m+j+jj+1];
for(int kkk=0;kkk<fBlkKK;kkk++){

b0 = bt[jj+0][kk+kkk]; b1 = bt[jj+1][kk+kkk];
ct_00 += popcnt(A[(i+ii+0)*_k + k+kk+kkk]^b0);
ct_01 += popcnt(A[(i+ii+0)*_k + k+kk+kkk]^b1);
ct_10 += popcnt(A[(i+ii+1)*_k + k+kk+kkk]^b0);
ct_11 += popcnt(A[(i+ii+1)*_k + k+kk+kkk]^b1);
ct_20 += popcnt(A[(i+ii+2)*_k + k+kk+kkk]^b0);
ct_21 += popcnt(A[(i+ii+2)*_k + k+kk+kkk]^b1);
ct_30 += popcnt(A[(i+ii+3)*_k + k+kk+kkk]^b0);
ct_31 += popcnt(A[(i+ii+3)*_k + k+kk+kkk]^b1);

}
C[(i+ii+0)*m+j+jj+0] = ct_00; C[(i+ii+0)*m+j+jj+1] = ct_01;
C[(i+ii+1)*m+j+jj+0] = ct_10; C[(i+ii+1)*m+j+jj+1] = ct_11;
C[(i+ii+2)*m+j+jj+0] = ct_20; C[(i+ii+2)*m+j+jj+1] = ct_21;
C[(i+ii+3)*m+j+jj+0] = ct_30; C[(i+ii+3)*m+j+jj+1] = ct_31;

}
}  

Fig. 5. CPU implementation of binarized matrix multiply (C = A x B).  

A. Baseline SGEMV/SGEMM on CPU/GPUs 
For CPU evaluation, we use a high-performance 2.3 GHz 

Intel® Xeon E5-2699v3 server (i.e., Haswell-EP). It has 90 
MB of aggregate LLC and 36 physical cores. For baseline 
SGEMV, we enabled MKL and OpenMP, ensuring that the 
software is taking advantage of multi-threaded execution 
across the 36 physical cores. Runtime and power 
measurements are done using performance counters.   

For GPU evaluation, we use a high-performance Nvidia 
Titan X GPU, as well as Nvidia mobile GPU (mGPU) on TX1 
embedded development platform. For baseline SGEMV on 
GPU, we use cuBLAS libraries. We measure power using 
nvidia-smi utility on Nvidia Titan X. Since TX1 did not 
provide such facility, we measured power using Kill-A-Watt 
power meter. We ran the software in a loop until wall power 
measurement stabilized. To get best performance in TX1, we 
forced all clocks to run at maximum speed (i.e., ~1 GHz), as 

the default clock management scheme provided sub-optimal 
performance (i.e., ran at ~70MHz). 

B. Binarized GEMV/GEMM on CPU 
For binarized GEMV, our Haswell-EP platform has built-in 

instructions for population count exposed through the SSE4a 
extension to the x86 ISA. These instructions are popcnt for 32-
bit operands and popcntl for 64-bit operands. While included in 
the SSE4a set of instruction extensions, they are not SIMD 
instructions and only execute on scalar register values.  On the 
Haswell microarchitecture, a population count instruction can 
be initiated every cycle –yielding 64 “binary ops” per cycle.  In 
contrast, a well-tuned single precision implementation of 
matrix multiply using AVX2 FMA instructions can retire at 
most 32 flops per cycle, or ½ the throughput of the population 
count based binary operation.  Therefore, a tuned binary matrix 
multiply implementation has a performance roofline of 2x over 
a tuned single precision implementation of matrix multiply. 

As binary matrix multiply is not included in standard BLAS 
packages, we wrote our own implementation (shown in Figure 
5). Our implementation uses an outer level of cache blocking 
and an inner-level of register blocking in order to achieve 
compute-bound performance. The outer block is sized to fit in 
the 256 kB L2 cache of our Haswell CPU. In code listing 
shown in Figure 5, we explicitly copy and transpose the outer 
cache block into the 2d array “bt” in order to achieve better 
memory locality and increase the cache hit rate.   

The inner block is sized to fit in CPU registers (“ct_xx” in 
the code listing).  We experimentally determined that a 4x2 
register block yields the highest performance on our platform 
as larger register block sizes incur spilling while smaller block 
sizes do not have enough register reuse. Finally, we use 
OpenMP to parallelize across CPU cores. 

C. Binarized GEMV/GEMM on GPUs 
We evaluate a binary matrix multiply kernel (xnor_gemm) 

from BinaryNet [2]. The CUDA implementation uses shared 
memory blocking to reduce the number of access to global 
memory. For matrix multiplication of C = A x B, each thread 
block loads sub-matrices of A and B from global memory into 
shared memory. Then, each thread in thread blocks computes 
one element of the sub-matrix C using xnor and __popc() 
operations. The evaluated xnor_gemm kernel is similar to the 
blocked version of matrix multiply in the CUDA Programming 
Guide except for the code for computing the product C. 

The population count operation is natively supported in 
Nvidia GPU devices via __popc() (for 32-bit operands) and 
__popcll() (for 64-bit operands) intrinsic functions. These are 
directly used in the CUDA kernel, and the CUDA compiler 
maps __popc() to a single instruction and __popcll() to a few 
instructions.  

On our evaluated GTX Titan X platform, 32 32-bit 
population count operations can be issued every cycle per 
Streaming Multiprocessor (SM) – yielding 1024 “binary ops” 
per cycle. As GTX Titan X can issue up to 128 32-bit floating-
point operations every cycle per SM, the performance roofline 
of “binary ops” over FP32 operations is 4x. 



V. EVALUATION 
We studied a set of neural network layer configurations that 

are used by popular networks, such as AlexNet [8], VGG [11], 
and Neural Talk (NT) [12]. See Table I. We focus on the fully 
connected layer, which contains most of the weights in the 
network and are the most challenging due to the large model 
size. As stated in the introduction, larger models in fully-
connected layers are challenging to execute efficiently since 
they do not fit on-chip, necessitating off-chip DRAM accesses 
that are very energy inefficient and imposes performance limit 
on the DRAM bandwidth available to access these models. 

TABLE I. NEURAL NETWORK LAYER CONFIGURATIONS UNDER STUDY. 

Name Outputs Inputs Binarized model size (MB) 

Alex/VGG 7 4096 4096 2.00 
Alex/VGG 8 1000 4096 0.49 

NT-We 600 4096 0.29 
NT-Wd 8791 600 0.63 

NTLSTM 2400 1201 0.34 
 

For FPGA, we only evaluate layers that can fit on the 
~4MB RAMs that our FPGA design could use. We evaluate 

performance and performance/watt.  For the high-performance 
platforms (Xeon CPU, Titan X GPU), we also evaluate batched 
execution with batch size of 10, as suggested in [3]. For non-
binarized software evaluation, the batched experiments called 
CPU or GPU SGEMM kernels, while the non-batched 
experiments called SGEMV kernels.  

The evaluation results are shown in Figure 6, 7, and 8. 
Figure 6 and 7 show performance and performance/watt, 
relative to non-batched baseline CPU software. Figure 8 
depicts the fraction of peak performance that is achievable, 
indicating platform utilization. E.g., 50% means only half of 
the peak performance available in the platform was achievable 
during our experiments. 

A. CPU versus GPU 
In a normal (no batching) mode, CPU performs comparably 

well to GPU, as show in Figure 6. On average, non-batched 
CPU has ~90% better performance than non-batched GPU. 
Among the five network layer configurations, GPU performs 
almost comparable to CPU only for Alex/VGG 7 where the 
number of outputs is equal to number of inputs (i.e., the weight 
matrix is square). In other cases, GPU is always noticeably 
inferior to CPU. 

Even though GPU has much higher peak performance, it is 

Fig. 8. Achieved performance relative to peak. E.g., 50% means only half of peak performance is realized. 

Fig. 6. Performance relative to baseline software on CPU. I.e., above 1 means speedup, while less than 1 means slowdown. 

Fig. 7. Performance/Watt relative to baseline software on CPU. 



extremely underutilized (i.e., ~1% utilization on average, as 
shown in Figure 8). The CPU is also underutilized (~6%), but 
not as much as the case with GPU. The low utilization is due to 
the challenge in being able to extract fine-grained parallelism 
out of the weight matrices. Without batching, there is only a 
single set of inputs (i.e., a vector) that is being multiplied 
against the weight matrix. Thus, there is limited data re-use. 
Unless the platform can extract sufficient fine-grained 
parallelism from this single matrix x vector operation to utilize 
the available platform resources, it is inevitable that the 
platform would suffer from underutilization.  

For CPU and GPU, when scaling up to multiple software 
threads, if there is only a small amount of data to process, the 
overhead of threading can end up being the dominant one. 

For the mobile GPU, as Figure 6 shows, its performance is 
much worse than a server CPU (i.e., ~40x worse on average). 
The mobile GPU also suffer from extreme underutilization 
(~1% on average, as shown in Figure 8), as in the case with 
high-performance GPU. However, the mobile GPU has much 
lower peak performance.  

Consequently, CPU achieved a better overall 
performance/watt than both the high-performance GPU as well 
as mobile GPU, as depicted in Figure 7. As such, for non-
batched neural networks, CPUs can be a better overall solution 
than GPU, delivering comparable performance while achieving 
better energy efficiency. 

B. Impact of Batching Multiple Inputs/Outputs 
Batching improves performance as well as utilization for 

both CPU and GPUs. This is because batching enables more 
data reuse, since there are multiple input vectors (forming an 
input matrix) to be multiplied against the weight matrix.  

As shown in Figure 6, batching improves performance by 
~80% for CPU and ~5.8x for GPU. Accordingly, 
performance/watt improves by similar degree, as shown in 
Figure 7.  

Batching improves CPU utilization by almost 2x (from 6% 
to 10%) and GPU by 7x (from 1% to 7%). Even though 
batching leads to noticeable improvements in utilization, at10% 
utilization for CPU and 7% for GPU, in overall these platforms 
are still underutilized. 

Furthermore, as explained in Section 2, batching increases 
latency. So, if possible, a solution that improves performance 
without necessitating batched operations would be preferable. 

C. Impacts of Binarization 
Binarization provides the potential to deliver significant 

performance improvements, since it reduces the storage 
requirements as well as computational demands. For CPU and 
GPU, smaller datasets means that they are more cacheable and 
can be kept on-chip. Further, binarized GEMV operation 
requires less computation than SGEMV, as discussed earlier.  

Indeed, our results in Figure 6 show that binarized CPU 
software has 5x better performance than baseline CPU. For 
GPU, binarization improves performance by ~11x.   
Binarization leads to larger speedups than batching. For 

example, while batching delivers 80% performance boost for 
CPU, binarization offers 5x improvements, which is 6x better 
than batching. GPU has similar trend as well. Moreover, 
binarized operations can be batched as well. Further speedups 
can be achieved by combining both batching and binarization.  

Hence, one can choose to do binarization only, which 
delivers improvements better than batching, while meeting low 
latency requirements. Or, one can combine binarization with 
batching to achieve better throughput, if latency constraints are 
not as stringent. 

Accordingly, as shown in Figure 7 and 8, binarization leads 
to improvements in performance/watt as well as utilizations.  

D. Hardware Accceleration 
Beyond software optimizations, both FPGA and ASIC 

accelerators can deliver even further improvements in 
performance and performance/watt. As shown in Figure 6, our 
FPGA and ASIC accelerators deliver one to two orders of 
magnitude speedups over the baseline CPU. The high-
performance FPGA1024 design delivers almost 50x 
performance improvement over the baseline CPU. 

These large performance speedups from accelerators are 
due to the custom hardware design for BNN, which consists of 
PEs that are well integrated with distributed on-chip RAMs to 
deliver neural network parameters to the PEs at a sufficiently 
high bandwidth to keep the PEs well utilized. The PE is also 
equipped with native support for binarized operations.  

Indeed, as shown in Figure 8, our accelerators achieve 
significantly higher utilizations (i.e., ~75%) than the software 
implementations on CPU and GPU. As such, even though our 
accelerators have lower peak performance than the high-
performance GPU, they are able to utilize most of it, resulting 
in significant performance improvements over GPU. 

As depicted in Figure 7, energy efficiency improvements 
achieved by the accelerators are even better. The ASIC 
implementations offer four orders of magnitudes in 
improvements over CPU baseline, while the FPGA offers three 
orders of magnitude. 

E. FPGA versus ASIC 
The general rule of thumb is that FPGA will be about an 

order of magnitude less efficient than ASIC. However, modern 
FPGAs contain “hardened” resources, such as DSPs for 
arithmetic operations and M20Ks (in Altera FPGA) for on-chip 
RAMs. When an FPGA design is implemented such that it uses 
these hard blocks, the efficiency gap between FPGA and ASIC 
can be reduced. This is the case for our BNN accelerators, 
which heavily use M20Ks on-chip RAMs and DSPs for 
arithmetic operations.  

Both FPGA64 and ASIC64 designs adopts the same 
microarchitecture (i.e., number of PEs and RAMs), hence they 
provide a direct comparison between FPGA and ASIC. 
Between these two designs, ASIC64 has ~4.5x higher 
performance than FPGA64 since it has higher frequency.  

In terms of energy efficiency (i.e., performance/watt), 
ASIC64 is ~11x better than FPGA64. However, Aria 10 FPGA 



is fabricated on a 20nm TSMC process technology, while the 
ASIC is on 14 nm Intel technology. Normalizing for such 
process technology difference, the FPGA/ASIC efficiency gap 
in this case is estimated to be less than ~8x, which is lower 
than the abovementioned rule of thumb. However, we think the 
less than ~8x ASIC/FPGA gap is due to the fact that our BNN 
accelerator heavily take advantage of the hard FPGA blocks 
(M20K for on-chip RAMs, hard DSPs for multiply/add). 

For the larger scale high-performance designs (FPGA1024, 
ASIC256), the large Aria 10 FPGA allowed us to implement 
1024-PE design, but at a lower frequency than ASIC (150MHz 
vs. 1GHz). Thus, while FPGA has more PEs, it runs slower, 
resulting in worse performance than the ASIC256 design.  

F. Opportunities for FPGAs 
The upcoming Altera Stratix 10 FPGA will offer even more 

M20Ks and DSP hard blocks. Therefore, we can expect to 
deploy designs with even more number of PEs in the Stratix 10 
when it becomes available. 

Furthermore, Stratix 10 has the new HyperFlex technology 
to deliver higher operating frequency through retiming. Since 
our BNN accelerator does not have tight data dependencies and 
is amenable to re-timing, we expect that our accelerator can 
take advantage of Stratix 10 support for higher frequency.  

The aforesaid trends highlight the tremendous opportunities 
for FPGAs. Unlike with fixed ASIC design, FPGAs can be 
reconfigured for other uses as well as newer improved versions 
of an accelerator. Thus, if the FPGA-to-ASIC efficiency gap 
narrows, there is a stronger case to adopt FPGA solutions. 

VI. RELATED WORK 
To the best of our knowledge, we are the first to propose 

hardware accelerator for BNNs. The original BNN paper [1] 
focused on the BNN algorithm. It describes the benefits of 
BNNs through algorithmic complexity analysis. A more recent 
BNN work (BinaryNet [2]) shows an evaluation of binarized 
GEMM on GPU using xnor and population count. In contrast, 
this paper proposes hardware accelerator architecture for 
BNNs, and offers comprehensive comparative evaluation 
across various interesting problem sizes, on FPGA, ASIC, 
server CPU, server GPU, and mobile GPU. 

Aside from BNNs, there are myriad of existing accelerators 
for Deep Learning (DL), targeting both FPGAs (e.g., [6]) as 
well as ASICs (e.g., [7]). However, none of them target BNNs. 
BNNs are unique, since they represent each network weight 
using a single bit, which requires a proper acceleration strategy 
to take full advantage of such bit-level representations. There 
are also existing studies on machine learning accelerators (e.g., 
[14][15]), which unlike this work, target non-DL algorithms. 

Multiplication of a dense matrix against a dense vector 
(GEMV) is a well-known construct that is part of the standard 
BLAS library. There are existing studies (e.g., [4]) that 
evaluate BLAS on CPUs, GPUs, and FPGAs. Unlike prior 
work, this paper focuses on a binarized GEMV. Moreover, this 
work offers comparison with an ASIC, while others only 
consider CPU, GPU, and/or FPGA. And, this paper targets 
more modern platforms. Finally, a recent study [16] evaluates 

neural network (NN) implementations on CPU, GPU, FPGA, 
and ASIC. However, it focuses on recurrent NNs, not BNNs. 

VII. CONCLUSION 
Binarized neural networks offer significant algorithmic 

efficiency improvements over standard full-precision networks. 
This paper proposed hardware accelerator architecture for 
BNNs, which delivers superior performance while consuming 
energy efficiently. We evaluated our accelerator to target Aria 
10 FPGA and 14nm ASIC. We compared these accelerator 
instances against optimized software on a high-performance 
multi-core CPU and GPU for cloud server, as well as a mobile 
GPU suitable for IoT. Our evaluation results show that the 
proposed accelerator can deliver orders of magnitude 
improvements in performance and performance/watt over well-
optimized software on CPU and GPU. Lastly, while FPGA is 
less efficient than ASIC, the FPGA-ASIC gap may be reduced 
for designs that heavily utilize hard blocks (DSP, M20K), such 
as our BNN accelerator. Hence, FPGA offers an attractive 
solution, which deliver superior efficiency improvements over 
software, without having to lock into a fixed ASIC solution. 
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