
Accelerating Recurrent Neural Networks in Analytics
Servers: Comparison of FPGA, CPU, GPU, and ASIC

Eriko Nurvitadhi, Jaewoong Sim, David Sheffield, Asit Mishra, Srivatsan Krishnan, Debbie Marr
Intel Corporation

Contact: eriko.nurvitadhi@intel.com

Recurrent neural networks (RNNs) provide state-of-the-art
accuracy for performing analytics on datasets with sequence
(e.g., language model). This paper studied a state-of-the-art RNN
variant, Gated Recurrent Unit (GRU). We first proposed
memoization optimization to avoid 3 out of the 6 dense matrix
vector multiplications (SGEMVs) that are the majority of the
computation in GRU. Then, we study the opportunities to
accelerate the remaining SGEMVs using FPGAs, in comparison
to 14-nm ASIC, GPU, and multi-core CPU. Results show that
FPGA provides superior performance/Watt over CPU and GPU
because FPGA’s on-chip BRAMs, hard DSPs, and reconfigurable
fabric allow for efficiently extracting fine-grained parallelisms
from small/medium size matrices used by GRU. Moreover, newer
FPGAs with more DSPs, on-chip BRAMs, and higher frequency
have the potential to narrow the FPGA-ASIC efficiency gap.

I. INTRODUCTION
Machine learning (ML) algorithms are at the heart of many

analytics workloads, which extract knowledge from the
plethora of digital data available today. Recurrent Neural
Network (RNN) is an ML algorithm that can provide state-of-
the-art results for analytics of datasets with sequences. It is
widely adopted in various use cases. For example, in language
modeling [1], RNN is used to analyze sequences of words and
sentences for applications such as sentence completion, speech
recognition, machine translation, etc.

Analytics workloads, including RNN-based ones, are
typically deployed on large-scale servers in data centers, which
demand extreme energy efficiency in addition to high
performance. To this end, recent server systems integrate
hardware accelerators alongside general purpose CPUs to
deliver significant execution efficiency for hotspots offloaded
to these accelerators, while maintaining generality to execute
the rest of the workloads on CPUs.

FPGAs, GPUs, and ASICs are the well-known options for
accelerators available in the market today. For FPGAs, recently
there have been major efforts from technology leaders to better
integrate FPGA accelerators within data center servers (e.g.,
Microsoft Catapult, IBM CAPI, Intel Xeon+FPGA). There is
also a growing number of GPU and ASIC accelerator solutions
offered commercially, such as NVIDIA GPU and IBM
PowerEN processor with edge network accelerators.

In this paper, we investigate the opportunities for
optimizing and accelerating a state-of-the-art RNN algorithm
variant, Gated Recurrent Network (GRU) [2], for language
model classification tasks on analytics servers. First, we
propose a memoization optimization to remove 50% of the
SGEMV operations, which is key bottleneck in GRU

algorithm, at the cost of more memory space usage. Our
optimization does not functionally alter the GRU algorithm.
Next, we developed FPGA accelerators for the SGEMV
hotspot, targeting multiple generations of Altera FPGAs
(Stratix V and Arria 10). Finally, we compare our FPGA
accelerator against state-of-the-art 14nm ASIC implementation,
and optimized SGEMV software on multi-core CPU and GPU.

 The rest of the paper is organized as follows. The next
section gives background on ML for analytics using recurrent
neural networks. Section III presents the proposed
memoization optimization. Section IV details our FPGA and
ASIC accelerators. Section V reports our evaluation results.
Section VI and VII offer related work and concluding remarks.

Fig. 1. Recurrent Neural Networks overview. (a) illustrates an RNN, which is
a neural network that has recurrent connections. (b) shows an example of
RNN for sentence completion. (c) shows the details of RNN. (d) shows the
details of Gated Recurrent Network, a state-of-the-art variant of RNN.

II. BACKGROUND
Many data analytics workloads rely on machine learning

(ML) algorithms. A typical ML setup for data analytics
consists of two phases. In training phase, a known set of data

samples is fed into an ML algorithm, which then creates a
model with predictive power. Then, in the classification phase,
this model is used by the ML algorithm to make predictions for
any new given data. This paper focuses on RNN algorithms
used in classification phase for language modeling.

Recurrent Neural Networks (RNNs). RNNs are neural
networks that contain recurrent connections (i.e., loops) within
the network. Figure 1(a) provides an illustration. Due to such
recurrent connections, RNNs are especially useful in analyzing
sequences. While a typical feedforward (non-recurrent) neural
network produces its output solely based on its current input,
an RNN produces its output by considering not only its current
input, but also based on the history of its previous inputs.

RNNs provide state-of-the-art results in language modeling
[1]. Figure 1(b) shows an example that predicts the next word
for a given sequence of words in a sentence. For a 4-word input
sequence “A week has seven”, the RNN calculate probabilities
of the next word and predicts that the next word is “days”.

The details of a standard RNN is provided in Figure 1(c). It
consists of a fully connected tanh() layer with recurrent
connections. It accepts as inputs: (1) data at step t, It, and (2)
the output of previous step Ot-1. W and U are dense matrices
containing the network weights. It and Ot-1 are represented as
dense vectors. It can be represented in a simple one-hot
encoding format, or in a format produced using advanced word
embedding methods (e.g., [4]). This study used the later since it
is more efficient, and is the existing state-of-the-art.

One known weakness of the standard RNN is its poor
ability in learning long-term dependencies. Consider the
sentence completion task for the following example input
sentences, “I grew up in France… I speak fluent French”. In
the last sentence, recent information (i.e., “I speak fluent”)
suggests that the next word would be a name of a language.
But, to predict that the language is “French”, the network has
to consider information from much earlier part of the input
sentences (“I grew up in France”).

Gated Recurrent Unit (GRU). A standard RNN provides
fixed weights between the current input (It) and the previous
history (Ot-1) in producing the current output (Ot), which tends
to forget information from much earlier part of the input
sequence. This makes standard RNN ineffective in learning
long-term dependencies. GRU [5] is an RNN variant that
addresses this issue. Unlike a standard RNN, a GRU has the
ability to dynamically adjust the weights on current input and
history to determine how much long-term history to keep and
new information to carry forward.

Figure 1(d) depicts GRU details. zt is an “update gate”,
which takes the current input It and the output of the previous
step Ot-1 and determines how much old information to carry
through to the output (Ot). rt is a “reset gate” which determines
how much old information should be ignored in coming up
with a candidate output (Õt). The lower rt is, the more the old
information is ignored. Lastly, the final output Ot is determined
by taking into account the candidate output Õt and old
information scaled by the update gate zt.

There are other RNN variants that have been studied in the
literature. Among these variants, Long Short Term Memory
(LSTM) and GRU provide the best accuracies [5]. We focus on
GRU since it is more computationally efficient than LSTM.

III. GRU ALGORITHM OPTIMIZATION
Algorithmically, most of the computation happens in the

dense matrix vector multiplications (SGEMVs) of the weight
matrices (i.e., W and U matrices in Figure 1(d)). For the W,
Wr, and Wz matrices, the number of rows are based on the
number of hidden units (hsz) used in the GRU and the number
of columns are based on the width of the word encodings (esz).
For the U, Ur, and Uz matrices, the number of rows and
columns are based on the number of hidden units (hsz). Thus,
in overall, the multiplication on these 6 matrices demand (3 x
hsz x esz) + (3 x hsz x hsz) multiply-accumulate operations.

Since we focus on classification use case (instead of
training), these weight matrices are already learned and do not
change over the course of the computation. Therefore, to
improve the efficiency of the GRU computation, we propose to
memoize the results of the multiplications for the W, Wr, and
Wz matrices. For all possible word encodings in the vocabulary
(i.e., all It values in Figure 1(d)), we calculate W.It, Wr.It, and
Wz.It ahead of time and memoize the results in memory. While
we use 3 times the memory space, we can now avoid 3 out of
the 6 SGEMVs in GRU since we do not have to perform the
SGEMVs on the W, Wr, and Wz. More precisely, we avoid
computing 3 x hsz x esz multiply-accumulate operations.

We evaluate our approach using GRU software from
Yandex [6] as reference, on Penn Treebank dataset containing
~79K test data words. We used suggested algorithm parameters
[6] to provide good results on this dataset. (i.e., sigmoid hidden
layer of size 256, hierarchical softmax, 10K words
vocabulary). Since the hidden layer size dictates weight matrix
size that affects computational demand, we further
experimented with twice smaller (128 units) and larger (512
units) hidden layer sizes. Existing RNN/GRU/LSTM studies
have suggested this range of hidden layer sizes (e.g., 30-500
units in [1], 36-400 units in [5], and 128 units in [9]). We ran
our experiments on a 2.3 GHz Intel® Xeon E5-2699v3 server
and collected runtime profile using gprof and Intel® Vtune.

Fig. 2. Runtime breakdown of GRU with and without memoization. The y-
axis shows runtime normalized to a baseline implementation. Memoization
improves performance by 46% on average, by avoiding the multiplications on
W, Wr, and Wz matrices (MatVecW). Even with memoization, most of the
runtime is still spent on SGEMVs (i.e., in the MatVecU).

Figure 2 shows the evaluation results. The y axis shows the
runtime normalized to the baseline GRU version. Each bar is

broken down into runtime spent on multiplications on W, Wr,
and Wz matrices (MatVecW), multiplications U, Ur, and Uz
matrices (MatVecU), and the rest of the GRU computations
(OtherOps). The memoization optimization eliminates the
MatVecW operations, and results in 46% improvements on
average. In both baseline and memoized versions, SGEMV
operation is the hotspot that dominates majority of runtime. As
such, the rest of the paper focuses on improving the SGEMV
execution efficiency using hardware accelerators.

Fig. 3. Accelerator Design. The matrix is divided into column blocks (e.g.,
CB0, CB1). Each floating-point multiply-accumulate (FMA, in green box)
processes a row in a column block, by multiplying input vector (VecIn)
elements against matrix row elements (MatRow) kept in on-chip RAMs.
Input/output vectors are read/written by memory read/write units.

Fig. 4. FPGA and ASIC accelerators under study. (c) shows place-and-routed
ASIC design, where each color higlights a cluster with 16 FMA units.

IV. CUSTOM HARDWARE ACCELERATOR
We designed a custom hardware (in Figure 3) to accelerate

the SGEMV hotspots in GRU. The design consists of a
memory read unit, a memory write unit, and clusters of
multiple floating-point multiply-accumulate units (FMAs).

In this design, the matrix is divided into column blocks
(e.g., CB0, CB1). Each FMA unit (green box in Figure 3) is
responsible for processing a row in a column block by
multiplying elements of the input vector (VecIn) against row
matrix elements kept in the on-chip RAMs (MatRow). By
having an FMA responsible for a row, the accumulate
operation can be done in place in an FMA unit’s accumulator

register (acc).When the FMA produces the final accumulated
value for a row in a column block, it is provided to the
reduction unit (reduce). This unit adds the two FMA results for
both column blocks to produce the final output vector element
value (VecOutN). Multiple FMA units are grouped together as
an FMAcluster. Numbers of FMAs and/or FMAclusters can be
adjusted to scale the design. Arbitrarily large matrix is divided
into blocks, which are processed by the accelerator one at a
time. The accelerator computes rows and columns in a block
in parallel. Blocks are determined based on available
accelerator resources (FMAs, RAMs) and the matrix size.

FPGA Implementations. For our experiments, we target
Altera Stratix V and Arria 10 FPGAs. Both FPGAs contain
~6MBs of on-chip RAMs (i.e., M20s, MLABs). Stratix V has
352 DSPs, while Arria 10 has 1518 DSPs. We implemented
our accelerator in Verilog RTL and used Quartus for synthesis.
FMAs and RAMs in the design are mapped to DSPs and
M20Ks. We obtained FPGA power estimate using Altera’s
PowerPlay Early Power Estimator tool and memory power
estimate using DRAMsim. Figure 4 details the resource
utilizations for the designs we studied.

ASIC implementation. For the ASIC implementation, we
set a comparable peak performance target as the Stratix V
FPGA implementation, which is 126.7 GFLOP/s. As such, we
included 4 FMAclusters with no column blocking, with 16
FMAs/cluster. Hence, there are 64 FMA units in our ASIC
implementation. At 1GHz, the 64 FMAs can provide 128
GFLOP/s peak performance. We synthesized and place-and-
routed the design for Intel’s 14nm process technology. This
gave us ASIC area and power numbers. The ASIC design met
our target 1 GHz frequency. Figure 4 provides the summary of
the ASIC implementation. It also shows a place-and-routed
design, where each of the four FMA clusters is highlighted
with a different color. We model RAM structures using
CACTI. Our design uses a 4MB RAMs with 64 banks.

V. EVALUATION RESULTS
The comparison of performance, performance utilization,

and performance/watt among CPU, GPU, FPGA, and ASIC are
shown in Figures 5-7. We provide results for NoBatch mode (1
input at a time) and Batch10 mode (group 10 inputs at a time,
as used in [3]). The CPU and GPU results are from optimized
software using MKL and cuBLAS libraries on Intel Xeon E5-
2699v3 CPU and NVIDIA GTX Titan X GPU.

FPGA vs. CPU/GPU. Without batching, FPGA performs
better than CPU and GPU, except for Stratix V for the larger
512x512 matrix (Figure 5). Accordingly FPGA is more
efficient with better utilization of its peak performance (Figure
6), resulting in superior ~10x performance/Watt (Figure 7).
CPU and GPU cannot extract enough fine-grained parallelism
from small/medium size GRU matrices, while FPGA utilize
custom hardware design to carefully place and distribute matrix
data on the many on-chip RAMs (M20Ks), and to orchestrate
data movements to utilize the available FMA units (DSPs).

Batching improves CPU/GPU utilization, which leads to
better performance. Nevertheless, in overall CPU/GPU are still
underutilized (Figure 6). Batching improves CPU more so than
GPU. Interestingly, even without batch mode, Arria 10

provides competitive performance relative to batched CPU and
GPU. This shows the potential for FPGA to offer the best of
both worlds, achieving competitive performance and efficiency
without the shortcomings of batch mode (e.g., increased
processing latency, implementation complexity overheads).

Fig. 5. Performance for all the accelerators under study, relative to CPU
performance with no batching.

Fig. 6. Achieved performance relative to peak performance. E.g., 10% means
the system is underutilized, where the achieved GFLOP/s is only at 10% of
the available peak GFLOP/s. On the other hand, 100% means full utilization.

Fig. 7. Performance/Watt for all the accelerators under study, relative to the
CPU performance with no batching. The y-axis is in log-scale.

FPGA vs. ASIC. The ASIC accelerator has better
performance and utilization than Stratix V accelerator (Figures
5-6). Even though the ASIC accelerator was designed to be
comparable in peak performance to Stratix V design, ASIC’s
truly custom implementation leads to better efficiency. E.g.,
our Stratix V design only used 256 DSPs out of 352 DSPs
available on the FPGA due to routing constraints, while our
ASIC contains just the necessary FMA hardware units.

 Typically, one would expect ASIC to provide an order of
magnitude efficiency improvements over FPGA, which is
consistent with our results (Figure 7). However, note that the
FPGAs are fabricated using an older technology than the ASIC.
For example, the Stratix V FPGAs are fabricated using 28-nm
TSMC technology, while our accelerator uses 14-nm Intel

technology. If we were to normalize to consider the process
technology difference, we can expect conservatively that the
FPGA is at most only ~7x less efficient than the ASIC. Next-
generation Stratix 10 FPGAs will have significantly more
DSPs and M20Ks, along with more advanced fabric to enable
higher frequency. For accelerator designs such as one studied
here, which relies heavily on FMA operations and on-chip
RAMs, the FPGA-ASIC efficiency gap will narrow even more.

VI. RELATED WORK
To the best of our knowledge, there are only two prior RNN

FPGA accelerators [8][9]. The first [8] is for training a standard
RNN. It uses 1-hot word encoding. The second [9] is an LSTM
FPGA accelerator that also uses 1-hot word encoding. In
contrast, we focus on GRU, an RNN variant that is as accurate
as LSTM [5], but require less computation. Furthermore, we
use word embedding approach [4] that is more efficient and
scalable than 1-hot encoding. There are studies on RNN for
GPUs (e.g., [7]), but they do not consider FPGAs and ASIC.
Finally, there are many other accelerator proposals for ML
(e.g., [10][11]), but they are not for RNN and its variants.

VII. CONCLUSION
This paper studied opportunities to optimize and accelerate

Gated Recurrent Unit, an advanced variant of the Recurrent
Neural Networks. We first proposed a memoization
optimization to avoid 3 out of 6 SGEMV operations that are
the key bottleneck in GRU. Then, we studied an accelerator
design for SGEMV mapped to Stratix V and Arria 10 FPGAs
as well as a 14-nm ASIC, comparing them against optimized
GPU and GPU implementations. Results show that FPGAs
offer significant efficiency improvements over CPU and GPU.
Furthermore, while ASIC is still more efficient than FPGA, the
efficiency gap may become closer with newer FPGAs with
more hard DSPs, on-chip BRAMs, and higher frequency.

REFERENCES
[1] T Mikolov, M Karafiát, L Burget, J Cernocký, S Khudanpur, “Recurrent

Neural Network based Language Model,” INTERSPEECH, 2010.
[2] K. Cho, B. Merrienboer, C. Gulcehre, et al., “Learning Phrase

Representations using RNN Encoder–Decoder for Statistical Machine
Translation,” Empirical Methods in Natural Language Processing, 2014.

[3] D. Amodei, et al., “Deep Speech 2: End-to-End Speech Recognition in
English and Mandarin,” arXiv:1512.02595 [cs.CL].

[4] T. Mikolov, I. Sutskever, K. Chen, et al., “Distributed Representations
of Words and Phrases and their Compositionality,” NIPS, 2013.

[5] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical Evaluation of
Gated Recurrent Neural Networks on Sequence Modeling,” NIPS Deep
Learning and Representation Learning Workshop, 2014.

[6] Yandex RNN software. https://github.com/yandex/faster-rnnlm
[7] B. Li, E. Zhou, B. Huang, J. Duan, Y. Wang, "Large Scale Recurrent

Neural Network on GPU," IJCNN, pp. 4062-4G69, 2014.
[8] S. Li, C. Wu, H. Li, B. Li, Y. Wang, Q. Qiu, “FPGA Acceleration of

Recurrent Neural Network Based Language Model,” FCCM 2015.
[9] A. X. M Chang, B. Martini, E. Culurciello, “Recurrent Neural Networks

Hardware Implementation on FPGA,” arXiv:1511.05552 [cs.NE].
[10] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. “Cnp: An fpga-based

Processor for Convolutional Networks,” FPL 2009.
[11] E. Nurvitadhi, A. K. Mishra, et al., “Hardware Accelerator for Analytics

of Sparse Data,” Design Automation and Test in Europe (DATE), 2016.

