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Recurrent neural networks (RNNs) provide state-of-the-art 
accuracy for performing analytics on datasets with sequence 
(e.g., language model). This paper studied a state-of-the-art RNN 
variant, Gated Recurrent Unit (GRU). We first proposed 
memoization optimization to avoid 3 out of the 6 dense matrix 
vector multiplications (SGEMVs) that are the majority of the 
computation in GRU. Then, we study the opportunities to 
accelerate the remaining SGEMVs using FPGAs, in comparison 
to 14-nm ASIC, GPU, and multi-core CPU. Results show that 
FPGA provides superior performance/Watt over CPU and GPU 
because FPGA’s on-chip BRAMs, hard DSPs, and reconfigurable 
fabric allow for efficiently extracting fine-grained parallelisms 
from small/medium size matrices used by GRU. Moreover, newer 
FPGAs with more DSPs, on-chip BRAMs, and higher frequency 
have the potential to narrow the FPGA-ASIC efficiency gap. 

I. INTRODUCTION 
Machine learning (ML) algorithms are at the heart of many 

analytics workloads, which extract knowledge from the 
plethora of digital data available today. Recurrent Neural 
Network (RNN) is an ML algorithm that can provide state-of-
the-art results for analytics of datasets with sequences. It is 
widely adopted in various use cases. For example, in language 
modeling [1], RNN is used to analyze sequences of words and 
sentences for applications such as sentence completion, speech 
recognition, machine translation, etc.  

Analytics workloads, including RNN-based ones, are 
typically deployed on large-scale servers in data centers, which 
demand extreme energy efficiency in addition to high 
performance. To this end, recent server systems integrate 
hardware accelerators alongside general purpose CPUs to 
deliver significant execution efficiency for hotspots offloaded 
to these accelerators, while maintaining generality to execute 
the rest of the workloads on CPUs.  

FPGAs, GPUs, and ASICs are the well-known options for 
accelerators available in the market today. For FPGAs, recently 
there have been major efforts from technology leaders to better 
integrate FPGA accelerators within data center servers (e.g., 
Microsoft Catapult, IBM CAPI, Intel Xeon+FPGA). There is 
also a growing number of GPU and ASIC accelerator solutions 
offered commercially, such as NVIDIA GPU and IBM 
PowerEN processor with edge network accelerators.  

In this paper, we investigate the opportunities for 
optimizing and accelerating a state-of-the-art RNN algorithm 
variant, Gated Recurrent Network (GRU) [2], for language 
model classification tasks on analytics servers. First, we 
propose a memoization optimization to remove 50% of the 
SGEMV operations, which is key bottleneck in GRU 

algorithm, at the cost of more memory space usage. Our 
optimization does not functionally alter the GRU algorithm. 
Next, we developed FPGA accelerators for the SGEMV 
hotspot, targeting multiple generations of Altera FPGAs 
(Stratix V and Arria 10). Finally, we compare our FPGA 
accelerator against state-of-the-art 14nm ASIC implementation, 
and optimized SGEMV software on multi-core CPU and GPU. 

 The rest of the paper is organized as follows. The next 
section gives background on ML for analytics using recurrent 
neural networks. Section III presents the proposed 
memoization optimization. Section IV details our FPGA and 
ASIC accelerators. Section V reports our evaluation results. 
Section VI and VII offer related work and concluding remarks. 

 

Fig. 1. Recurrent Neural Networks overview. (a) illustrates an RNN, which is 
a neural network that has recurrent connections. (b) shows an example of 
RNN for sentence completion. (c) shows the details of RNN. (d) shows the 
details of Gated Recurrent Network, a state-of-the-art variant of RNN.  

II. BACKGROUND 
Many data analytics workloads rely on machine learning 

(ML) algorithms. A typical ML setup for data analytics 
consists of two phases. In training phase, a known set of data 



samples is fed into an ML algorithm, which then creates a 
model with predictive power. Then, in the classification phase, 
this model is used by the ML algorithm to make predictions for 
any new given data. This paper focuses on RNN algorithms 
used in classification phase for language modeling.  

Recurrent Neural Networks (RNNs). RNNs are neural 
networks that contain recurrent connections (i.e., loops) within 
the network. Figure 1(a) provides an illustration. Due to such 
recurrent connections, RNNs are especially useful in analyzing 
sequences. While a typical feedforward (non-recurrent) neural 
network produces its output solely based on its current input, 
an RNN produces its output by considering not only its current 
input, but also based on the history of its previous inputs.  

RNNs provide state-of-the-art results in language modeling 
[1]. Figure 1(b) shows an example that predicts the next word 
for a given sequence of words in a sentence. For a 4-word input 
sequence “A week has seven”, the RNN calculate probabilities 
of the next word and predicts that the next word is “days”.  

The details of a standard RNN is provided in Figure 1(c). It 
consists of a fully connected tanh() layer with recurrent 
connections. It accepts as inputs: (1) data at step t, It, and (2) 
the output of previous step Ot-1. W and U are dense matrices 
containing the network weights. It and Ot-1 are represented as 
dense vectors. It can be represented in a simple one-hot 
encoding format, or in a format produced using advanced word 
embedding methods (e.g., [4]). This study used the later since it 
is more efficient, and is the existing state-of-the-art. 

One known weakness of the standard RNN is its poor 
ability in learning long-term dependencies. Consider the 
sentence completion task for the following example input 
sentences, “I grew up in France… I speak fluent French”. In 
the last sentence, recent information (i.e., “I speak fluent”) 
suggests that the next word would be a name of a language. 
But, to predict that the language is “French”, the network has 
to consider information from much earlier part of the input 
sentences (“I grew up in France”). 

Gated Recurrent Unit (GRU). A standard RNN provides 
fixed weights between the current input (It) and the previous 
history (Ot-1) in producing the current output (Ot), which tends 
to forget information from much earlier part of the input 
sequence. This makes standard RNN ineffective in learning 
long-term dependencies. GRU [5] is an RNN variant that 
addresses this issue. Unlike a standard RNN, a GRU has the 
ability to dynamically adjust the weights on current input and 
history to determine how much long-term history to keep and 
new information to carry forward. 

Figure 1(d) depicts GRU details.  zt is an “update gate”, 
which takes the current input It and the output of the previous 
step Ot-1 and determines how much old information to carry 
through to the output (Ot). rt is a “reset gate” which determines 
how much old information should be ignored in coming up 
with a candidate output (Õt). The lower rt is, the more the old 
information is ignored. Lastly, the final output Ot is determined 
by taking into account the candidate output Õt and old 
information scaled by the update gate zt.  

There are other RNN variants that have been studied in the 
literature. Among these variants, Long Short Term Memory 
(LSTM) and GRU provide the best accuracies [5]. We focus on 
GRU since it is more computationally efficient than LSTM. 

III. GRU ALGORITHM OPTIMIZATION 
Algorithmically, most of the computation happens in the 

dense matrix vector multiplications (SGEMVs) of the weight 
matrices (i.e., W and U matrices in Figure 1(d)). For the W, 
Wr, and Wz matrices, the number of rows are based on the 
number of hidden units (hsz) used in the GRU and the number 
of columns are based on the width of the word encodings (esz). 
For the U, Ur, and Uz matrices, the number of rows and 
columns are based on the number of hidden units (hsz). Thus, 
in overall, the multiplication on these 6 matrices demand (3 x 
hsz x esz) + (3 x hsz x hsz) multiply-accumulate operations. 

Since we focus on classification use case (instead of 
training), these weight matrices are already learned and do not 
change over the course of the computation. Therefore, to 
improve the efficiency of the GRU computation, we propose to 
memoize the results of the multiplications for the W, Wr, and 
Wz matrices. For all possible word encodings in the vocabulary 
(i.e., all It values in Figure 1(d)), we calculate W.It, Wr.It, and 
Wz.It ahead of time and memoize the results in memory. While 
we use 3 times the memory space, we can now avoid 3 out of 
the 6 SGEMVs in GRU since we do not have to perform the 
SGEMVs on the W, Wr, and Wz. More precisely, we avoid 
computing 3 x hsz x esz multiply-accumulate operations. 

We evaluate our approach using GRU software from 
Yandex [6] as reference, on Penn Treebank dataset containing 
~79K test data words. We used suggested algorithm parameters 
[6] to provide good results on this dataset. (i.e., sigmoid hidden 
layer of size 256, hierarchical softmax, 10K words 
vocabulary). Since the hidden layer size dictates weight matrix 
size that affects computational demand, we further 
experimented with twice smaller (128 units) and larger (512 
units) hidden layer sizes. Existing RNN/GRU/LSTM studies 
have suggested this range of hidden layer sizes (e.g., 30-500 
units in [1], 36-400 units in [5], and 128 units in [9]). We ran 
our experiments on a 2.3 GHz Intel® Xeon E5-2699v3 server 
and collected runtime profile using gprof and Intel® Vtune. 

Fig. 2. Runtime breakdown of GRU  with and without memoization. The y-
axis shows runtime normalized to a baseline implementation. Memoization 
improves performance by 46% on average, by avoiding the multiplications on 
W, Wr, and Wz matrices (MatVecW). Even with memoization, most of the 
runtime is still spent on SGEMVs (i.e., in the MatVecU).  

Figure 2 shows the evaluation results. The y axis shows the 
runtime normalized to the baseline GRU version. Each bar is 



broken down into runtime spent on multiplications on W, Wr, 
and Wz matrices (MatVecW), multiplications U, Ur, and Uz 
matrices (MatVecU), and the rest of the GRU computations 
(OtherOps). The memoization optimization eliminates the 
MatVecW operations, and results in 46% improvements on 
average. In both baseline and memoized versions, SGEMV 
operation is the hotspot that dominates majority of runtime. As 
such, the rest of the paper focuses on improving the SGEMV 
execution efficiency using hardware accelerators.  

 

Fig. 3. Accelerator Design. The matrix is divided into column blocks (e.g., 
CB0, CB1). Each floating-point multiply-accumulate (FMA, in green box) 
processes a row in a column block, by multiplying input vector (VecIn) 
elements against matrix row elements (MatRow) kept in on-chip RAMs. 
Input/output vectors are read/written by memory read/write units. 

Fig. 4. FPGA and ASIC accelerators under study. (c) shows place-and-routed 
ASIC design, where each color higlights a cluster with 16 FMA units. 

IV. CUSTOM HARDWARE ACCELERATOR 
We designed a custom hardware (in Figure 3) to accelerate 

the SGEMV hotspots in GRU. The design consists of a 
memory read unit, a memory write unit, and clusters of 
multiple floating-point multiply-accumulate units (FMAs). 

In this design, the matrix is divided into column blocks 
(e.g., CB0, CB1). Each FMA unit (green box in Figure 3) is 
responsible for processing a row in a column block by 
multiplying elements of the input vector (VecIn) against row 
matrix elements kept in the on-chip RAMs (MatRow). By 
having an FMA responsible for a row, the accumulate 
operation can be done in place in an FMA unit’s accumulator 

register (acc).When the FMA produces the final accumulated 
value for a row in a column block, it is provided to the 
reduction unit (reduce). This unit adds the two FMA results for 
both column blocks to produce the final output vector element 
value (VecOutN). Multiple FMA units are grouped together as 
an FMAcluster. Numbers of FMAs and/or FMAclusters can be 
adjusted to scale the design. Arbitrarily large matrix is divided 
into blocks, which are processed by the accelerator one at a 
time.  The accelerator computes rows and columns in a block 
in parallel. Blocks are determined based on available 
accelerator resources (FMAs, RAMs) and the matrix size. 

FPGA Implementations. For our experiments, we target 
Altera Stratix V and Arria 10 FPGAs. Both FPGAs contain 
~6MBs of on-chip RAMs (i.e., M20s, MLABs). Stratix V has 
352 DSPs, while Arria 10 has 1518 DSPs. We implemented 
our accelerator in Verilog RTL and used Quartus for synthesis. 
FMAs and RAMs in the design are mapped to DSPs and 
M20Ks. We obtained FPGA power estimate using Altera’s 
PowerPlay Early Power Estimator tool and memory power 
estimate using DRAMsim. Figure 4 details the resource 
utilizations for the designs we studied. 

ASIC implementation. For the ASIC implementation, we 
set a comparable peak performance target as the Stratix V 
FPGA implementation, which is 126.7 GFLOP/s. As such, we 
included 4 FMAclusters with no column blocking, with 16 
FMAs/cluster. Hence, there are 64 FMA units in our ASIC 
implementation. At 1GHz, the 64 FMAs can provide 128 
GFLOP/s peak performance. We synthesized and place-and-
routed the design for Intel’s 14nm process technology. This 
gave us ASIC area and power numbers. The ASIC design met 
our target 1 GHz frequency. Figure 4 provides the summary of 
the ASIC implementation. It also shows a place-and-routed 
design, where each of the four FMA clusters is highlighted 
with a different color. We model RAM structures using 
CACTI.  Our design uses a 4MB RAMs with 64 banks. 

V. EVALUATION RESULTS 
The comparison of performance, performance utilization, 

and performance/watt among CPU, GPU, FPGA, and ASIC are 
shown in Figures 5-7. We provide results for NoBatch mode (1 
input at a time) and Batch10 mode (group 10 inputs at a time, 
as used in [3]). The CPU and GPU results are from optimized 
software using MKL and cuBLAS libraries on Intel Xeon E5-
2699v3 CPU and NVIDIA GTX Titan X GPU. 

FPGA vs. CPU/GPU. Without batching, FPGA performs 
better than CPU and GPU, except for Stratix V for the larger 
512x512 matrix (Figure 5). Accordingly FPGA is more 
efficient with better utilization of its peak performance (Figure 
6), resulting in superior ~10x performance/Watt (Figure 7). 
CPU and GPU cannot extract enough fine-grained parallelism 
from small/medium size GRU matrices, while FPGA utilize 
custom hardware design to carefully place and distribute matrix 
data on the many on-chip RAMs (M20Ks), and to orchestrate 
data movements to utilize the available FMA units (DSPs). 

Batching improves CPU/GPU utilization, which leads to 
better performance. Nevertheless, in overall CPU/GPU are still 
underutilized (Figure 6).  Batching improves CPU more so than 
GPU. Interestingly, even without batch mode, Arria 10 



provides competitive performance relative to batched CPU and 
GPU. This shows the potential for FPGA to offer the best of 
both worlds, achieving competitive performance and efficiency 
without the shortcomings of batch mode (e.g., increased 
processing latency, implementation complexity overheads). 

Fig. 5. Performance for all the accelerators under study, relative to CPU 
performance with no batching.  

Fig. 6. Achieved performance relative to peak performance. E.g., 10% means 
the system is underutilized, where the achieved GFLOP/s is only at 10% of 
the available peak GFLOP/s. On the other hand, 100% means full utilization. 

Fig. 7. Performance/Watt for all the accelerators under study, relative to the 
CPU performance with no batching. The y-axis is in log-scale.  

FPGA vs. ASIC. The ASIC accelerator has better 
performance and utilization than Stratix V accelerator (Figures 
5-6). Even though the ASIC accelerator was designed to be 
comparable in peak performance to Stratix V design, ASIC’s 
truly custom implementation leads to better efficiency. E.g., 
our Stratix V design only used 256 DSPs out of 352 DSPs 
available on the FPGA due to routing constraints, while our 
ASIC contains just the necessary FMA hardware units. 

 Typically, one would expect ASIC to provide an order of 
magnitude efficiency improvements over FPGA, which is 
consistent with our results (Figure 7). However, note that the 
FPGAs are fabricated using an older technology than the ASIC. 
For example, the Stratix V FPGAs are fabricated using 28-nm 
TSMC technology, while our accelerator uses 14-nm Intel 

technology. If we were to normalize to consider the process 
technology difference, we can expect conservatively that the 
FPGA is at most only ~7x less efficient than the ASIC. Next-
generation Stratix 10 FPGAs will have significantly more 
DSPs and M20Ks, along with more advanced fabric to enable 
higher frequency. For accelerator designs such as one studied 
here, which relies heavily on FMA operations and on-chip 
RAMs, the FPGA-ASIC efficiency gap will narrow even more. 

VI. RELATED WORK 
To the best of our knowledge, there are only two prior RNN 

FPGA accelerators [8][9]. The first [8] is for training a standard 
RNN. It uses 1-hot word encoding. The second [9] is an LSTM 
FPGA accelerator that also uses 1-hot word encoding. In 
contrast, we focus on GRU, an RNN variant that is as accurate 
as LSTM [5], but require less computation. Furthermore, we 
use word embedding approach [4] that is more efficient and 
scalable than 1-hot encoding. There are studies on RNN for 
GPUs (e.g., [7]), but they do not consider FPGAs and ASIC. 
Finally, there are many other accelerator proposals for ML 
(e.g., [10][11]), but they are not for RNN and its variants.  

VII. CONCLUSION 
This paper studied opportunities to optimize and accelerate 

Gated Recurrent Unit, an advanced variant of the Recurrent 
Neural Networks. We first proposed a memoization 
optimization to avoid 3 out of 6 SGEMV operations that are 
the key bottleneck in GRU. Then, we studied an accelerator 
design for SGEMV mapped to Stratix V and Arria 10 FPGAs 
as well as a 14-nm ASIC, comparing them against optimized 
GPU and GPU implementations. Results show that FPGAs 
offer significant efficiency improvements over CPU and GPU. 
Furthermore, while ASIC is still more efficient than FPGA, the 
efficiency gap may become closer with newer FPGAs with 
more hard DSPs, on-chip BRAMs, and higher frequency. 
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